Archipelago of Montane Forests Surrounded by Rupestrian Grasslands: New Insights and Perspectives

  • Marcel S. Coelho
  • G. Wilson Fernandes
  • Priscila Pacheco
  • Victor Diniz
  • Alline Meireles
  • Rubens M. dos Santos
  • Felipe A. Carvalho
  • Daniel Negreiros


In this chapter, we describe, for the first time, the natural islands of Atlantic rainforests, regionally known as capões (heretofore called Atlantic forest islands, or simply forest islands), associated to the Espinhaço Range under the perspective of the landscape context in which they are immersed. The structure, composition and reproductive aspects of the vegetation are analyzed, as are their soil properties. Forest islands of the Espinhaço Range have a similar floristic composition to the semi-deciduous forests of southeastern Brazil, that are associated to the Atlantic rainforest domain, despite having been classified in its climate regime as ombrophilous vegetation. The forest islands of the Espinhaço Range are classified as disjunctions of broadleaved, evergreen, cloud, montane tropical forest located on mountain ridges, rocky slopes or swamps. Forest islands are always associated to mountains, which have concentrated rainfall and cloudiness. The forest islands are located in an ecological transition zone and are strongly influenced by elements of the Atlantic rainforest biome, despite the elements of the Cerrado biome (in the present case, in a matrix of rupestrian grasslands), which are present in minor proportions. The influence of the rupestrian grassland ecosystem increases according to the levels of disturbance suffered by the vegetation. The forest islands are an edaphoclimatic formation, hence dependent on specific climate and soil properties for their development. Soil physical properties, such as drainage, are more relevant than their chemical properties, like nutrient input, to the establishment and development of the forest islands. Among the several threats, fire stands out, causing large decreases in the dimensions of the forest and changes in the successional dynamics of the vegetation. These natural islands, which are mostly immersed in matrices of rupestrian grasslands, have a high biogeographical importance, especially as a refuge for the seasonal surrounding environment. However, they may be under a fast-paced threat due to recurrent anthropogenic fires and the potential effects of climate and land use changes.


Floristic Composition Gallery Forest Moist Forest Atlantic Rainforest Great Species Richness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank FAPEMIG, CNPq and Reserva Vellozia for finantial and logistical support. To Ramón Perea (Stanford University) for reading the manuscript and for suggestions.


  1. Ab`Saber AN (2003) Os domínios de natureza no Brasil: potencialidades paisagísticas. Ateliê Editorial, São PauloGoogle Scholar
  2. Barbosa NPU, Fernandes GW, Carneiro MAA, Júnior LAC (2010) Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved in a quartzitic mountainous grassland of southeastern Brazil (rupestrian fields). Biol Inv 12:3745–3755CrossRefGoogle Scholar
  3. Barbosa NPU, Fernandes GW, Sanchez-Azofeifa A (2015) A relict species restricted to a quartzitic mountain in tropical America: an exemple of microrefugium? Acta Bot Bras 29:299–309CrossRefGoogle Scholar
  4. Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394CrossRefPubMedGoogle Scholar
  5. Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538CrossRefPubMedGoogle Scholar
  6. Botrel RT, Oliveira-Filho AT, Rodrigues AL, Curi N (2002) Influência do solo e topografia sobre as variações da composição florística e estrutura da comunidade arbóreo-arbustiva de uma floresta estacional semidecidual em Ingaí, MG. Rev Bras Bot 25:195–213CrossRefGoogle Scholar
  7. Budke JC, Jarenkow JA, Oliveira-Filho AT (2007) Relationships between tree component structure, topography and soils of a riverside forest, Rio Botucaraí, southern Brazil. Plant Ecol 189:187–200CrossRefGoogle Scholar
  8. Budke JC, Jarenkow JA, Oliveira-Filho AT (2010) Intermediary disturbance increases tree diversity in riverine forest of southern Brazil. Biodiv Cons 19:2371–2387CrossRefGoogle Scholar
  9. Campos MTVA (1995) Composição Florística e aspectos da estrutura e da dinâmica de três capões na Serra do Cipó, Minhas Gerais, Brasil. MSc Dissertation. Universidade de São PauloGoogle Scholar
  10. Carvalho LMT, Fontes MAL, Oliveira-Filho AT (2000a) Tree species distribution in canopy gaps and mature forest in an area of cloud forest of the Ibitipoca Range, south-eastern Brazil. Plant Ecol 149:9–22CrossRefGoogle Scholar
  11. Carvalho DA, Oliveira-Filho AT, Vitela EA, Curi N (2000b) Florística e estrutura da vegetação arbórea de um fragmento de floresta semidecidual às margens do reservatório da Usina Hidrelétrica Dona Rita (Itambé do Mato Dentro, MG). Acta Bot Bras 14:37–55Google Scholar
  12. Carvalho DA, Oliveira-Filho AT, Van Den Berg E, Fontes MAL, Vilela EA, Marques JJGSM, Carvalho WAC (2005) Variações florísticas e estruturais do componente arbóreo de uma floresta ombrófila alto-montana às margens do Rio Grande, Bocaina de Minas, MG, Brasil. Acta Bot Bras 19:91–109CrossRefGoogle Scholar
  13. Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19CrossRefGoogle Scholar
  14. Castellani TT, Stubblebine WH (1993) Sucessão secundária inicial em uma mata tropical mesófila, após perturbação por fogo. Rev Bras Bot 16:181–203Google Scholar
  15. Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919CrossRefPubMedGoogle Scholar
  16. Coelho MS (2014) Padrões e processos ecológicos em capões de mata da cadeia da Serra do Espinhaço. PhD Thesis. Universidade Federal de Minas GeraisGoogle Scholar
  17. Coelho MS, Almada ED, Quintino AV, Fernandes GW, Santos RM, Sanchez-Azofeifa A, Espítito-Santo MM (2012) Floristic composition and structure of a tropical dry forest at different successional stages in the Espinhaço Mountains, southeastern Brazil. Interciencia 37:190–196Google Scholar
  18. Coutinho LM (1982) Ecological effects of fire in Brazilian Cerrado. In: Huntley BJ, Walker BH (eds) Ecological studies: ecology of tropical savannas. Springer, New York, pp 273–291CrossRefGoogle Scholar
  19. Coutinho LM (1990) Fire in the ecology of Brazilian Cerrado. In: Goldammer JG (ed) Ecological studies: fire in the tropical biota. Springer, New York, pp 82–105CrossRefGoogle Scholar
  20. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  21. Durigan G, Bernacci LC, Franco GADC, Arbocz GDF, Metzger JP, Catharino ELM (2008) Estádio sucessional e fatores geográficos como determinantes da similaridade florística entre comunidades florestais no Planalto Atlântico, estado de São Paulo, Brasil. Acta Bot Bras 22:51–62CrossRefGoogle Scholar
  22. Eller CB, Lima AL, Oliveira RS (2013) Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud florest tree species, Drimys brasiliensis (Winteraceae). New Phytol 199:151–162CrossRefPubMedGoogle Scholar
  23. Fernandes GW, Barbosa NPU, Negreiros D, Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Nat Cons 12:162–165CrossRefGoogle Scholar
  24. França GS, Stehmann JR (2004) Composição florística e estrutura do component arbóreo de uma floresta altimontana do sul de Minas Gerais, Brasil. Rev Bras Bot 27:19–30CrossRefGoogle Scholar
  25. Gentry AH (1995) Patterns of diversity and floristics composition in a neotropical montane forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Neotropical montane forests biodiversity and conservation symposium. The New York Botanical Garden, New york, pp 103–126Google Scholar
  26. Giulietti AM, Menezes NL, Pirani JR, Meguro M, Wanderley MGL (1987) Flora da Serra do Cipó, Minas Gerais: caracterização e lista de espécies. Bol Bot Univ São Paulo 9:1–159Google Scholar
  27. Gonzaga APD, Oliveira-Filho AT, Machado ELM, Hargreaves P, Machado JNN (2008) Diagnóstico florístico-estrutural do component arbóreo da floresta da Serra de São José, Tiradentes, MG, Brasil. Acta Bot Bras 22:505–520CrossRefGoogle Scholar
  28. Higuchi P, Oliveira-Filho AT, Bebber DP, Brown ND, Silva AC, Machado ELM (2008) Spatio-temporal patterns of tree community dynamics in a tropical forest fragment in South-east Brazil. Plant Ecol 1999:125–135CrossRefGoogle Scholar
  29. Howe HF (1994) Managing tall-grass species diversity: assumptions and implications. Cons Biol 8:691–704CrossRefGoogle Scholar
  30. Ivanauskas NM, Monteiro R, Rodrigues RR (2003) Alterations following a fire in a Forest community of Alto Rio Xingu. For Ecol Manag 184:239–250CrossRefGoogle Scholar
  31. Laurance WF, Cochrane MA (2001) Synergistic effects in fragmented landscapes. Special section. Cons Biol 15:1488–1535CrossRefGoogle Scholar
  32. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, AmsterdamGoogle Scholar
  33. Lista de Espécies da Flora do Brasil Jardim Botânico do Rio de Janeiro (LEFB). Accessed 25 May 2014
  34. Machado ELM, Oliveira-Filho AT (2010) Spatial patterns of tree community dynamics are detectable in a small (4 ha) and disturbed fragment of the Brazilian Atlantic forest. Acta Bot Bras 24:250–261CrossRefGoogle Scholar
  35. Meguro M, Pirani JR, Mello Silva R, Giulietti AM (1996a) Caracterização florística e estrutural de matas ripárias e capões de altitude da Serra do Cipó, Minas Gerais. Bol Bot Univ São Paulo 15:13–29Google Scholar
  36. Meguro M, Pirani JR, Mello-Silva R, Giullietti AM (1996b) Estabelecimento de matas ripárias e capões nos ecossistemas campestres da Cadeia do Espinhaço. Bol Bot Univ São Paulo 15:1–11Google Scholar
  37. Oksanen J (2009) Multivariate analysis of ecological communities in R: Vegan Tutorial. url:
  38. Oliveira-Filho AT (2009) Classificação das fitofisionomias da América do Sul Cisandina Tropical e Subtropical: proposta de um novo sistema – prático e flexível – ou uma injeção a mais de caos? Rodriguésia 60:237–258Google Scholar
  39. Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among atlantic forest in southeastern Brazil and the influence of climate. Biotropica 32:793–810CrossRefGoogle Scholar
  40. Oliveira-Filho AT, Vilela EA, Carvalho DA, Gavilanes ML (1994a) Effects of soil and topography on the distribution of tree species in a tropical riverine forest in South-eastern Brazil. J Trop Ecol 10:483–508CrossRefGoogle Scholar
  41. Oliveira-Filho AT, Vilela EA, Gavilanes ML, Carvalho DA (1994b) Comparison of the woody flora and soils of six montane semi-deciduous Forest in Southern Minas Gerais, Brazil. Edinb J Bot 51:355–389CrossRefGoogle Scholar
  42. Oliveira-Filho AT, Mello JM, Scolforo RS (1997) Effects of past disturbance and edges on tree community structure and dynamics within a fragment of tropical semideciduous forest in south-eastern Brazil over a five-year period (1987–1992). Plant Ecol 131:45–66CrossRefGoogle Scholar
  43. Oliveira-Filho AT, Curi N, Vilela AE, Carvalho DA (2001) Variation in tree community composition and structure with changes in soil properties within a fragment of semideciduous forest in south-eastern Brazil. Edinb J Bot 58:139–158CrossRefGoogle Scholar
  44. Oliveira-Filho AT, Carvalho DA, Fontes MAL, Van Den Berg E, Curi N, Carvalho WAC (2004) Variações estruturais do compartimento arbóreo de uma floresta semidecídua altimontana na chapada das Perdizes, Carrancas, MG. Rev Bras Bot 27:291–309CrossRefGoogle Scholar
  45. Peloso BDA (2009) Classificação da vegetação do Parque Nacional da Serra do Cipó (MG) e sua relação com variáveis morfométricas. MSc Dissertation, Universidade Federal de Minas GeraisGoogle Scholar
  46. Peloso BDA, Shimabukuro YE (2010) Caracterização de unidades geo-botânicas do Parque Nacional da Serra do Cipó (MG) através da integração de imagens ópticas e modelo digital de elevação. Rev Bras Cart 62:103–118Google Scholar
  47. Pereira JAA, Oliveira-Filho AT, Lemos-Filho JP (2007) Environmental heterogeneity and disturbance by humans control much of the tree species diversity of Atlantic montane forest fragments in SE Brazil. Biodiv Cons 16:1761–1784CrossRefGoogle Scholar
  48. Pinto JRR, Oliveira-Filho AT, Hay JDV (2005) Influence of soil and topography on the composition of a tree community in a central Brazilian valley forest. Edinb J Bot 62:69–90CrossRefGoogle Scholar
  49. R Development Core team. 2013. R: a language and environment for statistical computing. Version 3.0.2. R Foundation for Statistical ComputingGoogle Scholar
  50. Ribeiro KT, Nascimento JS, Madeira JA, Ribeiro LC (2009) Aferição dos limites da Mata Atlântica na Serra do Cipó, MG, Brasil, visando maior compreenão e proteção de um mosaico vegetacional fortemente ameaçado. Nat Cons 7:30–49Google Scholar
  51. Rizzini CT (1997) Tratado de fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos. Âmbito, Rio de JaneiroGoogle Scholar
  52. Ross KA, Fox BJ, Fox MD (2002) Changes to plant species richness in forest fragments: fragmente age, disturbance and fire history may be as importante as area. J Biogeogr 29:749–765CrossRefGoogle Scholar
  53. Sanchez M, Pedroni F, Eisenlohr PV, Oliveira-Filho AT (2013) Changes in tree community composition and structure of Atlantic rain forest on a slope of the Serra do Mar range, southeartern Brazil, from near sea level to 1000 m of altitude. Flora 208:184–196CrossRefGoogle Scholar
  54. Santos MF (2009) Análise florística em floresta estacional semidecidual na encosta leste da Serra do Cipó, MG. MSc Dissertation, Universidade de São PauloGoogle Scholar
  55. Santos MF, Serafim H, Sano PT (2011) Fisionomia e composição da vegetação florestal na Serra do Cipó, MG, Brasil. Acta Bot Bras 25:793–814CrossRefGoogle Scholar
  56. Santos MF, Serafim H, Sano PT (2012) Composição e estrutura arbórea em floresta estacional semidecidual no Espinhaço meridional (Serra do Cipó, MG). Rodriguésia 63:985–997CrossRefGoogle Scholar
  57. Silva VF, Oliveira-Filho AT, Venturin N, Carvalho WAC, Gomes JBV (2005) Impacto do fogo no componente arbóreo de uma floresta estacional semidecídua no município de Ibituruna, MG, Brasil. Acta Bot Bras 19:701–716CrossRefGoogle Scholar
  58. Silva LCR, Sternberg L, Haridasans M, Hoffmann WA, Miralles-Wilhelm F, Franco AC (2008) Expansion of gallery forests into central Brazilian savannas. Glob Change Biol 14:2108–2118CrossRefGoogle Scholar
  59. Souza DT (2009) Composição florística e estrutura dos capões de altitude no parque estadual do Rio Preto, Minas Gerais, Brasil. MSc Dissertation, Universidade Federal de Minas GeraisGoogle Scholar
  60. Tabarelli M, Lopes AV, Peres CA (2008) Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40:657–661CrossRefGoogle Scholar
  61. Toniato MTZ, Oliveira-Filho AT (2004) Variations in tree community composition and structure in a fragment of tropical semideciduous forest in southeastern Brazil related to different human disturbance histories. Forest Ecol Manag 198:319–339CrossRefGoogle Scholar
  62. Valente EL (2009) Relações solo-vegetação no Parque Nacional da Serra do Cipó, Espinhaço Meridional, Minas Gerais. PhD Thesis, Universidade Federal de ViçosaGoogle Scholar
  63. Van den Berg EVD, Oliveira-Filho AT (2000) Composição florística e estrutura fitossociológica de uma floresta ripária em Itutinga, Minas Gerais, e comparação com outras áreas. Rev Bras Bot 23:231–253Google Scholar
  64. Van der Hammen T (1995) Global change, biodiversity, and conservation of neotropical montane forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of neotropical montane forests. The New York botanical Garden, New York, pp 603–607Google Scholar
  65. Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S, Mahy G, Negreiros D, Overbeck GE, Veldman RG, Zaloumis NP, Putz FE, Bond WJ (2015) Toward an old-growth concept for grasslands, savannas, and woodlands. Front Ecol Environ 13:154–162CrossRefGoogle Scholar
  66. Veloso HP, Ranel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira adaptada a um sistema universal. Instituto Brasileiro de Geografia e Estatística, Rio de JaneiroGoogle Scholar
  67. Webster GL (1995) The panorama of Neotropical Cloud Forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiersity and conservation of neotropical montane forests: proceedings of neotropical montane forest biodiversity and conservation symposium. The New York Botanical Garden, New York, pp 57–77Google Scholar
  68. Whelan RJ (1997) Ecology of fire. Cambridge University, United kingdonGoogle Scholar
  69. Whitmore TC (1990) An introduction to tropical rain forests. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marcel S. Coelho
    • 1
  • G. Wilson Fernandes
    • 1
    • 2
  • Priscila Pacheco
    • 1
  • Victor Diniz
    • 1
  • Alline Meireles
    • 1
  • Rubens M. dos Santos
    • 3
  • Felipe A. Carvalho
    • 1
  • Daniel Negreiros
    • 1
  1. 1.Ecologia Evolutiva & Biodiversidade/DBG, ICBUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of BiologyStanford UniversityStanfordUSA
  3. 3.Departamento de Ciências Florestais, Campus Universitario Jardim EldoradoUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations