Water Resources in the Rupestrian Grasslands of the Espinhaço Mountains

  • Marcos Callisto
  • José Francisco Gonçalves
  • Raphael Ligeiro


The rupestrian grasslands in Minas Gerais State comprise headwaters of important watersheds that drainages for millions citizens in over 400 cities in São Francisco and Doce river basins. The human activities in the rupestrian grasslands include domestic supply, agriculture, forestry, cattle raising, industry, and mineral extraction. This chapter addresses the ecological conditions of streams in terms of water quality (physical and chemical characteristics, nutrient availability), habitat quality and structure (diversity of benthic macroinvertebrates, structure of the riparian vegetation, riparian food webs, invertebrate drift), and ecosystem functioning (allochthonous and autochthonous production, dynamics of coarse and fine particulate organic matter, leaf litter breakdown of native and alien species). A synthesis of 20 years of ongoing research on the headwaters in the rupestrian grasslands is included, together with perspectives for future conservation and management of water resources.


Leaf Litter Riparian Vegetation Beta Diversity Aquatic Invertebrate Headwater Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Geraldo W. Fernandes for the invitation to contribute with this chapter and for his constructive comments on early versions. Manuel Graça and Irineu Bianchini offered carefull reading and insights to previous version of this chapter. Our studies have been supported by Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), P&D ANEEL (GT-487) and CEMIG-Programa Peixe Vivo. MC was awarded research productivity grants CNPq (No. 303380/2015-2) and CNPq research grant (446155/2014-4) and Minas Gerais researcher grant FAPEMIG PPM-77/13 and PPM IX-02/2015. JFG-Jr was supported by CNPq (Proc. 472.328/01–8), FAPEMIG (Proc. 1085/03, APQ-2051-5.03/07, and FAPEMIG/PRONEX 20/2006, 465/07) and PADI-Project AWARE Foundation. The authors are grateful for the logistical support provided by IBAMA, IEF-MG and the US Fish and Wildlife Service.


  1. Allan JD (2004) Landscape and riverscapes: The influence of land use on river ecosystems. Ann Rev Ecol Evol Syst 35:257–284CrossRefGoogle Scholar
  2. Allan JD, Castillo MM (2007) Stream ecology: Structure and function of running waters. Springer, NetherlandsCrossRefGoogle Scholar
  3. Alves CBM, Lean CG, Brito MFG, Santos ACA (2008) Biodiversidade e conservação de peixes do complexo do Espinhaço. Megadiv 4:145–164Google Scholar
  4. Alvim EACC, Medeiros AO, Rezende RS, Gonçalves JF (2015) Small leaf breakdown in a Savannah headwater stream. Limnol 51:131–138Google Scholar
  5. Barbosa FAR, Galdean N (1997) Ecological taxonomy: A basic tool for biodiversity conservation. Tren Ecol Evol 12:359–360CrossRefGoogle Scholar
  6. Begon M, Townsend CR, Harper JL (2007) Ecologia: de indivíduos a ecossistemas. Artmed, São PauloGoogle Scholar
  7. Benda L, Hassan MA, Church M, May CL (2005) Geomorphology of steepland headwaters: The transition from hill slopes to channels. J Am Water Res Assoc 41:835–851CrossRefGoogle Scholar
  8. Boyero L, Pearson R, Dudgeon D, Graça MAS, Gessner MO, Albarino R, Ferreira V, Mathuriau C, Boulton A, Arunachalam M, Callisto M, Chauvet E, Ramirez A, Chara J, Moretti MS, Gonçalves JFJr (2011a) Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecol 92:1839–1848Google Scholar
  9. Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, Helson JE, Bruder A, Albariño RJ, Yule CM, Arunachalam M, Davies JN, Figueroa R, Flecker AS, Ramírez A, Death RG, Iwata T, Mathooko JM, Mathuriau C, Gonçalves, JF, Moretti MS, Jinggut T, Lamothe S, M Erimba C, Ratnarajah L, Schindler MH, Castela J, Buria LM, Cornejo A, Villanueva V, West DC (2011b) A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett 14:289–294Google Scholar
  10. Boyero L, Pearson RG, Dudgeon D, Ferreira V, Graça MAS, Gessner MO, Boulton AJ, Chauvet E, Yule CM, Albariño RJ, Ramírez A, Helson JE, Callisto M, Arunachalam M., Chará J, Figueroa R, Mathooko JM, Gonçalves JF, Moretti MS, Chará-Serna AM, Davies JN, Encalada A, Lamothe S, Buria LM, Castela J, Cornejo A, Li AOY, M’Erimba C, Villanueva VD, Zúñiga C, Swan CM, Barmuta LA (2012) Global patterns of stream detritivore distribution: Implications for biodiversity loss in changing climates. Global Ecol Biogeog 21:134–141Google Scholar
  11. Boyero L, Pearson R, Gessner MO, Dudgeon D, Ramirez A, Yule C, Callisto M, Pringle C, Encalada A, Arunachalam M, Mathooko J, Helson J, Rincon J, Bruder A, Cornejo A, Flecker AS, Mathuriau C, Merimba C, Moretti MS, Gonçalves JF, Jinggut T (2015a) Leaf-litter breakdown in tropical streams: Is variability the norm? Freshwat Sci. doi: 10.1086/681093 Google Scholar
  12. Boyero L, Pearson R, Swan CM, Hui C, Albarino R, Arunachalan R, Callisto M, Chara J, Chara-Serna AM, Chauvet E, Cornejo A, Dudgeon D, Encalada A, Ferreira V, Gessner MO, Gonçalves JF, Graça MAS, Helson J, MathookoJ, McKie B, Moretti MS, Yule C (2015b) Latitudinal gradient of nestedness and its potential drivers in stream detritivores. Ecography 38:1–7Google Scholar
  13. Callisto M, Goulart MD (2005) Invertebrate drift along a longitudinal gradient in a Neotropical stream in Serra do Cipó National Park, Brazil. Hydrobiol 539:47–56CrossRefGoogle Scholar
  14. Callisto M, Graça MAS (2013) The quality and availability of fine particulate organic matter for collector species in headwater streams. Int Rev Hydrobiol. doi: 10.1002/iroh.201301524 Google Scholar
  15. Callisto M, Goulart M, Medeiros AO, Moreno P, Rosa CA (2004) Diversity assessment of benthic macroinvertebrates, yeasts, and microbiological indicators along a longitudinal gradient in Serra do Cipó, Brazil. Braz J Biol 64:743–755CrossRefPubMedGoogle Scholar
  16. Callisto M, Gonçalves JF, Graca MAS (2007) Leaf litter as a possible food source for chironomids in headwater streams. Rev Brasil Zool 24:442–448Google Scholar
  17. Castro DMP, Hughes RM, Callisto M (2013a) Effects of flow fluctuations on the daily and seasonal drift of invertebrates in a tropical river. Ann Limnol Int J Limnol. doi: 10.1051/limn/2013051 Google Scholar
  18. Castro DMP, Hughes RM, Callisto M (2013b) Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam. Braz J Biol 73:775–782CrossRefPubMedGoogle Scholar
  19. Clarke A, MacNally R, Bond N, Lake PS (2008) Macroinvertebrate diversity in headwater streams: A review. Freshwat Biol 53:1707–1721CrossRefGoogle Scholar
  20. Collen B, Boehm M (2012) The growing availability of invertebrate extinction risk assessments—A response to Cardoso et al. (October 2011): Adapting the IUCN red list criteria for invertebrates. Biol Conserv 149:145–146Google Scholar
  21. Collen B, Whitton F, Dyer EE, Baillie JEM, Cumberlidge N, Darwall WRT, Richman NI, Pollock C, Soulsby A-M, Bohm M (2013) Global patterns of freshwater species diversity, threat and endemism. Global Ecol Biogeog. doi: 10.1111/geb.12096 Google Scholar
  22. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol Rev 81:163–182CrossRefPubMedGoogle Scholar
  23. Fernandes GW, Barbosa NPU, Negreiros D, Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Nat Cons 12:162–165CrossRefGoogle Scholar
  24. Finn DS, Poff NL (2005) Variability and convergence in benthic communities along the longitudinal gradients of four physically similar rocky mountain streams. Freshwat Biol 50:243–261CrossRefGoogle Scholar
  25. França JS, Gregório RS, D’Arc JD, Gonçalves JF, Ferreira FA, Callisto M (2009) Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Mar Fresh Res 60:990–998Google Scholar
  26. Frissel CA, Liss WJ, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification—viewing streams in a watershed context. Environ Manag 10:199–214CrossRefGoogle Scholar
  27. Galdean N, Barbosa FAR, Callisto M, Rocha LA, Margarida MGSMM (1999) A proposed typology for the rivers of Serra do Cipó (Minas Gerais, Brazil) based on the diversity of benthic macroinvertebrates and the existing habitats. Trav Mus Natl Hist Nat Grigore Antipa 41:445–453Google Scholar
  28. Galdean N, Callisto M, Barbosa FAR (2000) Lotic ecosystems of Serra do Cipó, Southeast Brazil: Water quality and a tentative classification based on the benthic macroinvertebrate community. Aq Ecosyst Heal Manag 3:545–552Google Scholar
  29. Gonçalves JF, Callisto M (2013) Organic-matter dynamics in the riparian zone of a tropical headwater stream in Southern Brazil. Aquat Bot 109:8–13Google Scholar
  30. Gonçalves JF, França JS, Callisto M (2006a) Dynamics of allochthonous organic matter in a tropical Brazilian headstream. Braz Arch Biol Technol 49:967–973Google Scholar
  31. Gonçalves JF, França JS, Medeiros AO, Rosa CA, Callisto M (2006b) Leaf breakdown in a tropical stream. Int Rev Hydrobiol 91:164–177Google Scholar
  32. Gonçalves JF, Graça MAS, Callisto M (2006c) Leaf-litter breakdown in 3 streams in temperate, mediterranean, and tropical Cerrado climates. J N Am Benthol Soc 25:344–355Google Scholar
  33. Gonçalves JF, Graça MAS, Callisto M (2007) Litter decomposition in a cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwat Biol 52:1440–1451Google Scholar
  34. Gonçalves JF, Martins RT, Ottoni BMP, Couceiro SRM (2014) Uma visão sobre a decomposição foliar em sistemas aquáticos brasileiros. In: Hamada N, Nessimian J.L, Querino R.B (eds). Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. 1ed. Manaus: Editora do INPA, vol. I, pp. 89–116Google Scholar
  35. Hughes RM, Peck DV (2008) Acquiring data for large aquatic resource surveys: The art of compromise among science, logistics, and reality. J N Am Benthol Soc 27:837–859CrossRefGoogle Scholar
  36. Janzen DH (1974) Tropical blackwater rivers, animals, and mast fruiting by the dipterocarpaceae. Biotropica 6:69–103CrossRefGoogle Scholar
  37. Kominoski JS, Rosemond AD (2012) Conservation from the bottom up: Forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshwat Sci 31:51–68CrossRefGoogle Scholar
  38. Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450CrossRefGoogle Scholar
  39. Leite FSF, Juncá FA, Eterovick PC (2008) Status do conhecimento, endemismo e conservação de anfíbios anuros da Cadeia do Espinhaço, Brasil. Megadiv 4:182–200Google Scholar
  40. Ligeiro R, Melo AS, Callisto M (2010a) Spatial scale and the diversity of macroinvertebrates in a neotropical catchment. Freshw Biol 55:424–435CrossRefGoogle Scholar
  41. Ligeiro R, Moretti MS, Gonçalves JF, Callisto M (2010b) What is more important for invertebrate colonization in a stream with low-quality litter inputs: Exposure time or leaf species? Hydrobiol 235:1–2Google Scholar
  42. Macedo DR, Hughes RM, Ligeiro R, Ferreira W, Castro MA, Junqueira NT, Oliveira DR, Firmiano KR, Kaufmann PR, Pompeu PS, Callisto M (2014) The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landsc Ecol 29:1001–1016CrossRefGoogle Scholar
  43. Medeiros AO, Callisto M, Graça MAS, Ferreira V, Rosa CA, França JS, Eller AP, Rezende RS, Gonçalves JF (2015) Microbial colonization and litter decomposition in a cerrado stream is limited by low dissolved nutrient concentration: Evidence from a manipulative experiment. Limnetica (in press) 34:283–292Google Scholar
  44. Melo AS, Shneck F, Hepp LU, Simões NR, Siqueira T, Bini LM (2011) Focusing on variation: Methods and applications of the concept of beta diversity in aquatic ecosystems. Acta Limnol Bras 23:318–331CrossRefGoogle Scholar
  45. Moretti M, Gonçalves JF, Callisto M (2007a) Leaf breakdown in two tropical streams: Differences between single and mixed species packs. Limnol 37:250–258Google Scholar
  46. Moretti MS, Gonçalves JF, Ligeiro R, Callisto M (2007b) Invertebrates colonization on native tree leaves in a neotropical stream (Brazil). Int Rev Hydrobiol 92:199–210Google Scholar
  47. Piggott JJ, Nyougi DK, Townsend CR, Mathaei CD (2015) Multiple stressors and stream ecosystem functioning: Climate warming and agricultural stressors interact to affect processing of organic matter. J Appl Ecol. doi: 10.1111/1365-2664.12480 Google Scholar
  48. Stendera S, Adrian R, Bonada B, Cañedo-Argüelles M, Hungueny B, Januschke K, Pletterbauer F, Hering D (2012) Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: A review. Hydrobiol 696:1–28CrossRefGoogle Scholar
  49. Tuomisto H, Ruokolainen K (2006) Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecol 87:2697–2708CrossRefGoogle Scholar
  50. Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9CrossRefGoogle Scholar
  51. Wantzen KM, Wagner R, Suetfeld R, Junk WJ (2002) How do plant–herbivore interactions of trees influence coarse detritus processing by shredders in aquatic ecosystems of different latitudes? Verh Int Ver Theor Angew Limnol 28:815–821Google Scholar
  52. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monog 26:1–80CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marcos Callisto
    • 1
  • José Francisco Gonçalves
    • 2
  • Raphael Ligeiro
    • 3
  1. 1.Departamento de Biologia Geral, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisMinas GeraisBrazil
  2. 2.Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Instituto de Ciências Biológicas, Universidade Federal do ParáBelémBrazil

Personalised recommendations