Skip to main content

The Physical Environment of Rupestrian Grasslands (Campos Rupestres) in Brazil: Geological, Geomorphological and Pedological Characteristics, and Interplays

  • Chapter
  • First Online:

Abstract

The Rupestrian Grassland is a vegetational complex with grassy to shrubby formations that occur throughout the high mountains of Brazil, usually formed by structurally resistant rocks, little affected by late tectonics, and strongly eroded and weathered under long term geological stability. RGC is closely associated with high altitude landsurfaces, in which several factors have a determinant role: (1) extreme oligotrophy, and acid, nutrient-depleted parent materials; (2) resistance to weathering and erosion (chemical and physical); (3) constant wind exposure; (4) intense fire regime. Variations of RG phytophysiognomies are basically due to soil depth (edaphic factor), drainage and landscape stability and evolution. Landforms (geomorphological attributes) affect the RGC at continental scales (high landsurfaces), regional scales (regional landforms, such as escarpments, valleys, slopes) and local scales (soil depth, stoniness, rockiness, drainage). The most common occurrence of RGC in Brazil is on Quartzite and metarenites, followed by canga and other Fe-rich substrates, igneous rocks and metamorphics, hence displaying a high diversity of substrates, with a major trait of extreme soil oligotrophy and acidity, and crucial variations in soil depth. The occurrence of well-documented areas of RG on Granitic and gneissic terrains imply that even richer rocks, submitted to long term weathering and erosion, can lead to similar soils on Highlands, where rock outcrops are also common (e.g. Caparaó, Itatiaia, Brigadeiro, Serra dos Órgãos). RGC can occur immersed in different domains (Atlantic Forest, Caatinga, Cerrado), regardless of present day climates, since it represents an edaphic climax of long-term development. The widespread distribution of comparable RGC, from Amazonia (Carajás, Roraima, Pacaás Novos, Cachimbo) to the Central Plateau (Santa Barbara, Ricardo Franco, Pirineus) and Northeastern and Southeastern Brazil (Caparaó, Espinhaço, Sincorá, Jacobina, Itatiaia, Serra dos Órgãos, Brigadeiro, Carangola) raises the unresolved question of phylogenetic ancestry, age and similarities (floristic, structural) between those isolated islands of Rupestrian vegetation. These aspects are central to the evolution of Brazilian Biomes, representing key issues to resolve the late Quaternary Refuge Theory controversy, and test the validity of island biogeographical isolation theories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ab’Saber AN (1986) Geomorfologia da Região. In: Almeida JR (ed). Carajás: desafio político, ecologia e desenvolvimento. Brasiliense, Brasília, pp. 88–124

    Google Scholar 

  • Alkmim FF (2015) Geological Background: A Tectonic Panorama of Brazil. In: Vieira BC, Salgado AAR, Santos LJC (eds) Landscapes and landforms of Brazil. Springer, Netherlands, pp 9–17

    Google Scholar 

  • Almeida-Abreu PA (1995) O Supergrupo Espinhaço da Serra do Espinhaço Meridional (Minas Gerais): o Rifte, a Bacia e o Orógeno. Geonomos 3:1–18

    Google Scholar 

  • Almeida TE, Souza DT, Salino A, Teles AM (2007) Levantamento florístico e caracterização das formações vegetacionais, Parque Nacional das Sempre-Vivas. Unpub. Technical report

    Google Scholar 

  • Alves RJV, Silva NG, Oliveira JA, Medeiros D (2014) Circumscribing campo rupestre—megadiverse Brazilian rocky montane savanas. Braz J Biol 74:355–362

    Article  CAS  PubMed  Google Scholar 

  • Barros NF (1979) Growth and foliar nutrient concentrations of Eucalyptus grandis in relation to spodasol properties in South Florida. Ph.D. Dissertation, University of Florida

    Google Scholar 

  • Benites VM, Sá E, Schaefer CER, Novotny EH, Reis E, Ker JK (2005) Properties of black soil humic acids from high altitude rock complexes in Brazil. Geoderma 127:104–113

    Article  CAS  Google Scholar 

  • Benites VM, Schaefer CEGR, Simas FNB, Santos HG (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev Bras Bot 30:569–577

    Article  Google Scholar 

  • Botrel RT, Oliveira-Filho AT, Rodrigues LA, Curi N (2002) Influencia do solo e topografia sobre as variações da composição florística e estrutura da comunidade arbóreo–arbustiva de uma floresta estacional semidecidual em Ingaí, Mg. Rev Bras Bot 25:195–213

    Article  Google Scholar 

  • Butcher R, Byrne M, Crayn DM (2007) Evidence for convergent evolution among phylogenetically distant rare species of Tetratheca (Elaeocarpaceae formerly Tremandraceae) from Western Australia. Aust Syst Bot 20:126–138

    Article  CAS  Google Scholar 

  • Campos NV, Pereira TAR, Machado MF, Guerra MBB, Tolentino GS, Araújo JS, Rezende MQ, Silva MCNA, Schaefer CEGR (2014) Evaluation of micro-energy dispersive X-ray fluorescence and histochemical tests for aluminium detection in plants from high altitude rocky complexes, Southeast Brazil. An Acad Bras Ciênc 86:285–296

    Article  CAS  PubMed  Google Scholar 

  • Carmo FF, Jacobi CM (2012) As cangas do Quadrilátero Ferrífero. In: Jacobi CM, Carmo FF (eds) Diversidade florística nas cangas do Quadrilátero Ferrífero. IDM, Belo Horizonte, pp 1–13

    Google Scholar 

  • Dias HCT, Fernandes EIF, Schaefer CEGR, Fontes LEF, Ventorim LB (2002) Geoambientes do Parque Estadual do Ibitipoca, Município de Lima Duarte-MG. R Árv 26:777–786

    Google Scholar 

  • Diniz JMFDS, Dos Reis AA, Junior FWA, Gomide LR (2014) Detecção da expansão da área minerada no Quadrilátero Ferrífero, Minas Gerais, no período de 1985 a 2011 através de técnicas de sensoriamento remoto. Bol Cien Geod 20:683–700

    Article  Google Scholar 

  • Dossin IA, Garcia AJV, Uhlein A, Dossin TM (1987) Facies eólico na Formação Galho do Miguel, Supergrupo Espinhaço-MG. Bol Soc Bras Geol 6:85–96

    Google Scholar 

  • EMBRAPA—Empresa Brasileira De Pesquisa Agropecuária (1997) Manual de métodos de análise de solo. Centro Nacional de Pesquisas de Solos, Rio de Janeiro

    Google Scholar 

  • Gibson N (2004a) Flora and vegetation of the eastern Goldfields ranges: Part 6. mt manning range. J R Soc West Aust 87:35–47

    Google Scholar 

  • Gibson N (2004b) Flora and vegetation of the eastern Goldfields ranges: Part 7. middle and south Ironcap, Digger Rock and Hatter Hill. J R Soc West Aust 87:49–62

    Google Scholar 

  • Gibson N, Yates CJ, Dillon R (2010) Plant communities of the ironstone ranges of South Western Australia: Hotspots for plant diversity and mineral deposits. Biodiv Cons 19:3951–3962

    Article  Google Scholar 

  • Gibson N, Meissner R, Markey AS, Thompson WA (2012) Patterns of plant diversity in ironstone ranges in arid south Western Australia. J Arid Environ 77:25–31

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. John Wiley, Sons Ltd, Chichester

    Google Scholar 

  • Harley RM, Simmons NA (1986) Florula of Mucugê, Chapada Diamantina—Bahia, Brazil. Royal Botanical Garden, Kew

    Google Scholar 

  • IBAMA—Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2003) Plano de manejo para uso múltiplo da Floresta Nacional de Carajás. IBAMA, Brasília

    Google Scholar 

  • IBAMA—Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2006) Plano Operativo de prevenção e combate aos incêndios do Parque Nacional das Sempre-Vivas. IBAMA, Diamantina

    Google Scholar 

  • Jacobi CM, Carmo FF (2011) Life–forms, pollination and seed dispersal syndromes in plant communities on ironstone outcrops, SE, Brazil. Act Bot Bras 25:395–412

    Article  Google Scholar 

  • Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: A diverse and endangered Brazilian ecosystem. Biodiv Cons 16:2185–2200

    Article  Google Scholar 

  • Jacobi CM, Carmo FF, Vincent RC (2008) Estudo Fitossociológico de uma comunidade vegetal sobre canga com subsídio para a reabilitação de áreas mineradas no Quadrilátero Ferrífero, MG. Rev Arv 32:345–353

    Article  Google Scholar 

  • Jacobi CM, Carmo FF, Campos IC (2011) Soaring extinction threats to endemic plants in Brazilian metal-rich regions. Ambio 40:540–543

    Article  PubMed  PubMed Central  Google Scholar 

  • Lista de Espécies da Flora do Brasil (2015) Jardim Botânico do Rio de Janeiro. Available in. http://floradobrasil.jbrj.gov.br/. Accessed 29 Jan 2016

  • Markey AS, Dillon SJ (2008) Flora and vegetation of the banded iron formations of the Yilgarn Craton: The central tallering land system. Cons Sci West Aust 7:121–149

    Google Scholar 

  • Markey AS, Dillon SJ (2009) Flora and vegetation of the banded iron formations of the Yilgarn Craton: Herbert Lukin Ridge (Wiluna). Conserv Sci West Aust 7:391–412

    Google Scholar 

  • Markey AS, Dillon SJ (2010) Flora and vegetation of the banded iron formations of the Yilgarn Craton: Gullewa. Conserv Sci West Aust 7:531–556

    Google Scholar 

  • Martinelli G (1989) Campos de, altitude edn. Index, Rio de Janeiro

    Google Scholar 

  • Meirelles ST, Mattos EA, Silva AC (1997) Potential desiccation tolerant vascular plants from southeastern Brazil. Pol J Environ Stud 6:17–21

    Google Scholar 

  • Meissner R, Caruso Y (2008) Flora and vegetation of banded iron formations of the Yilgam Craton: Koolanooka and Pernjori hills. Cons Sci West Aust 7:73–88

    Google Scholar 

  • Meissner R, Wright J (2010) Flora and vegetation of banded iron formations on the Yilgarn Craton: South Illaara Greenstone Belt. Conse Sci West Aust 7:605–616

    Google Scholar 

  • Meissner R, Owen G, Bayliss B (2009) Flora and vegetation of the banded iron formation of the Yilgarn Craton: Robinson Ranges and Mount Gould. Cons Sci West Aust 7:363–376

    Google Scholar 

  • Mendonça MP, Lins LV (2000) Lista Vermelha das Espécies Ameaçadas de Extinção da Flora de Minas Gerais. Biodiversitas e Fundação ZooBotânica de Belo Horizonte, Belo Horizonte

    Google Scholar 

  • Messias MCTB, Leite MGP, Meira-Neto JA, Kozovits AR, Tavares R (2013) Soil–vegetation relationship in quartzitic and ferruginous Brazilian rocky outcrops. Folia Geobot 48:509–521

    Article  Google Scholar 

  • Morellato PC, Rosa NA (1991) Caracterização de alguns tipos de vegetação na região amazônica, Serra dos Carajás. Pará Brasil Rev Bras Bot 14:1–14

    Google Scholar 

  • Mourão A, Stehmann JR (2007) Levantamento da flora do campo rupestre sobre canga hematítica couraçada remanescente na Mina do Brucutu, Barão de Cocais, Minas Gerais, Brasil. Rodriguésia 58:775–785

    Google Scholar 

  • Nunes JA, Schaefer CEGR, Ferreira-Júnior WG, NERI AV, Correa, GR, Enright NJ (2015) Soil-vegetation relationships on a banded ironstone island, Carajás Plateau, Brazilian Eastern Amazonia. An Acad Bras Cien 87:2097–2110

    Google Scholar 

  • Porembski S, Barthlott W, Dorrstock S, Biedinger N (1994) Vegetation of rock outcrops in Guinea: Granite inselbergs, sandstone table mountains and ferricretes—remarks on species numbers and endemism. Flora 189:315–326

    Google Scholar 

  • Porembski S, Seine R, Barthlott W (1997) Inselberg vegetation and biodiversity of granite outcrops. J Roy Soc West Austral 80:193–197

    Google Scholar 

  • Porto ML, Silva MFF (1989) Tipos de vegetação metalófila em áreas da Serra de Carajás e de Minas Gerais, Brasil. Act Bot Bras 3:13–21

    Article  Google Scholar 

  • Queiroz LP, Sena TSN, Costa MJSL (1996) Flora vascular da Serra da Jibóia, Santa Terezinha. Bahia. I: O campo rupestre. Sitientibus 15:27–40

    Google Scholar 

  • Rizzini CT (1979) Tratado de fitogeografia do Brasil: Aspectos sociológicos e florísticos. Editora da Universidade de São Paulo, São Paulo

    Google Scholar 

  • Rodrigues PMS, Schaefer CEGR, Corrêa GR, Campos PV, Neri AV (2014) Soils, landform and vegetation determine the geoenvironments at a conservation unit in northern Minas Gerais, Brazil. Neotrop Biol Cons 10:31–42

    Google Scholar 

  • Santos MDC, Varajão AF (2004) Sedimentation and pedogenic features in a clay deposit in Quadrilátero Ferrífero, Minas Gerais, Brazil. An Acad Bras Ciênc 76:147–159

    Article  CAS  Google Scholar 

  • Sarcinelli TS, Schaeffer CEGR, Lynch LS, Arato HD, Viana JHM, Albuquerque Filho MR Gonçalves TT (2009) Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil. Catena 76:107–113

    Google Scholar 

  • Schaefer CEGR (2001) Brazilian latosols and their B horizon microstructure as long-term biotic constructs. Soil Res 39:909–926

    Article  CAS  Google Scholar 

  • Schaefer CEGR (2013) Bases físicas da paisagem brasileira: estrutura geológica, relevo e solos. In: Araújo AP, Alves BJR (eds) Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 1–69

    Google Scholar 

  • Schaefer CEGR, Gilkes RJ, Fernandes RBA (2004) EDS/SEM study on microaggregates of Brazilian Latosols, in relation to P adsorption and clay fraction attributes. Geoderma 123:69–81

    Article  CAS  Google Scholar 

  • Schaefer CEGR, MendonçA BAF, Ribeiro ASS (2008) Solos desenvolvidos sobre canga ferruginosa no quadrilaÏtero ferriÏfero, Minas Gerais. Biodiversidade, Conservaçafio e Perspectivas de Sustentabilidade. UFMF/ ICB, Belo Horizonte, SimpoÏsio Afloramentos Ferruginosos no QuadrilaÏtero FerriÏfero

    Google Scholar 

  • Schaefer CEGR, Simas FNB, Mendonça BAF, Saboya AS, Ferreira Júnior WG, Nunes JA, Correa GR (2009) Geodiversidade dos ambientes de canga na região de Carajás– Pará. Technical Report. part 2. Vale Brazilian Company

    Google Scholar 

  • Schaefer CEGR, Cândido HG, Corrêa GR, Pereira A, Nunes JA, Souza OF, Marins A, Fernandes-Filho E, Ker JC (2015) Solos desenvolvidos sobre canga ferruginosa no Brasil: Uma revisão crítica e papel ecológico de termiteiros. In: Carmo FF, Kamino LHY (eds) Geossistemas ferruginosos do Brasil: Áreas prioritárias para conservação da diversidade geológica e biológica. Patrimônio cultural e serviços ambientais. 3i, Belo Horizonte, pp. 77–102

    Google Scholar 

  • Schobbenhaus C, Brito-Neves BB (2003) A geologia do Brasil no contexto da Plataforma Sul-Americana. In: Schobbenhaus C, Vidotti RM, Gonçalves JH (eds) Geologia, tectônica e recursos minerais do Brasil. CPRM, Brasília, pp 5–25

    Google Scholar 

  • Secco RS, Mesquita AL (1983) Nota sobre a vegetação de canga da Serra Norte. I. Boletim Mus Par Em Goeldi 59:1–13

    Google Scholar 

  • Semir J (1991) Revisão taxonômica de Lychnophora Mart. Vernoniaceae: Compositae. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas

    Google Scholar 

  • Silva MFF (1992) Distribuição de metais pesados na vegetação metalófila de Carajás. Act Bot Bras 6:107–22

    Google Scholar 

  • Silva MFF, Rosa N (1984) estudos botânicos na área do projeto ferro de Carajás, Serra Norte. I—Aspectos ecológicos e vegetacionais dos campos rupestres. In: XXXV Congresso Nacional de Botânica, Sociedade Brasileira Botânica, Manaus, pp. 367–379

    Google Scholar 

  • Silveira FA, Negreiros D, Barbosa NP, Buisson E, Carmo FF, Carstensen DW, Lambers H (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil. doi: 10.1007/s11104-015-2637-8

    Google Scholar 

  • Tardy Y, Nahon D (1985) Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe3 + -kaolinite in bauxites and ferricretes: An approach to the mechanism of concretion formation. Am J Sci 285:865–903

    Article  CAS  Google Scholar 

  • Teixeira WA, Lemos-Filho JP (1998) Metais pesados em folhas de espécies lenhosas colonizadoras de uma área de mineração de ferro em Itabirito, Minas Gerais. Rev Árv 22:381–388

    Google Scholar 

  • Teixeira WA, Lemos-Filho JP (2002) Fatores edáficos e a colonização de espécies lenhosas em uma cava de mineração de ferro em Itabirito, Minas Gerais. Rev Árv 26:25–33

    CAS  Google Scholar 

  • Valentin C, Herbes JM, Poesen J (1999) Soil and water components of banded vegetation patterns. Catena 37:1–24

    Article  Google Scholar 

  • Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • Viana PL, Lombardi JA (2007) Florística e caracterização dos campos rupestres sobre canga na Serra da Calçada, Minas Gerais, Brasil. Rodriguesia 58:159–177

    Google Scholar 

  • Vincent RC (2004) Florística, fitossociologia e relações entre a vegetação e o solo em área de campos ferruginosos no Quadrilátero Ferrífero, Minas Gerais. Ph.D. Dissertation, Universidade de São Paulo

    Google Scholar 

  • Vincent RC, Meguro M (2008) Influence of soil properties on the abundance of plant species in ferruginous rocky soils vegetation, southeastern Brazil. Rev Bras Bot 31:377–388

    Article  Google Scholar 

  • Vincent RC, Jacobi CM, Antonini Y (2002) Diversidade na adversidade. Cien Hoje 31:64–67

    Google Scholar 

  • Yates CJ, Ladd PG, Coates DJ, Mcarthur S (2007) Hierarchies of cause: Understanding rarity in an endemic shrub Verticordia staminosa (Myrtaceae) with a highly restricted distribution. Aust J Bot 55:194–205

    Article  Google Scholar 

  • Yates CJ, Gibson N, Pettit NE, Dillon R, Palmer R (2011) The ecological relationships and demography of restricted ironstone endemic plant species: Implications for conservation. Aust J Bot 59:692–700

    Article  Google Scholar 

Download references

Acknowledgments

Carlos Schaefer thanks Vale, CNPq and FAPEMIG for financing long-term studies on Carajás and Iron Quadrangle; thanks are due to Dr. Lilia Santos (Bioma), James Bockheim, and João Ker for many field trips and discussions on RGC ecology. Help for field work Sr. Alexander Castilho (Vale) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E.G.R. Schaefer .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

Picture illustrations of phytophysiognomies and landscape features of Rupestrian Grassland Complex (RGC) on different lithologies in Brazil. The striking similarities between widely separate geographical sits, very contrasting parent-materials, indicate a notable convergence of edaphic/landscape features at different localities. (a) Itatiaia highlands at Campo Belo Valley (2400 m) on syenite (alkaline rocks) (mark 20 in Fig. 2.14). (b) Caparaó highlands at Upper Crystal Valley (above Terreirão Plateau), with Chusquea sp. on granitoid rocks (mark 17 in Fig. 2.14). (c) Serra do Brigadeiro Plateau Pedra do Pato, migmatites/granites Paraíba do Sul headwaters. (d) Shrubby rupestrian grassland in Serra do Espinhaço, Diamantina, Minas Gerais States, with Syagrus sp. (Palmeira da Serra), on micaceous quartzites (mark 12 in Fig. 2.14). (e) Sempre-Vivas National Park, shrubby rupestrian grassland on quartzite (mark 12 in Fig. 2.14). (f) Canastra National Park, open rupestrian grassland with Vellozia sp. on micaceaus quartzites/conglomerates (mark 19 in Fig. 2.14). (g) Ibitipoca State Park, with open rupestrian grassland on micaceous quartzites and metapelits (mark 23 in Fig. 2.14). (h) São Francisco River headwaters at Canastra National Park, with shrubby rupestrian grassland a quartzite plateau (mark 19 in Fig. 2.14). (i) Shrubby ferruginous rupestrian grassland on Fe-rich canga of Carajás Plateau, Santa Rita Durão, (see Caraça quartzite at background) (1000 m) (mark 8 in Fig. 2.14). (j) General view of ferruginous rupestrian grassland on the Fe-ich itabirite/canga on Serra Sul Plateau of Carajás (900 m) (mark 8 in Fig. 2.14). (k) Ferrugineous rupestrian grassland on the Fe-rich Itabirite/canga of Alto do Conta História (1600 m), Iron Quadrangle, Minas Gerais States (mark 16 in Fig. 2.14). (l) Exposed itabirite saprolite with overlying canga on the Moeda Plateau, with ferruginous rupestrian grassland (shrubby/open) (1380 m) (mark 16 in Fig. 2.14). (m) Open rupestrian savanna on metapelites from Serra de Grão Mogol (1200 m) (mark 12 in Fig. 2.14). (n) Open rupestrian grassland on conglomeratic quartzites of Diamantina Plateau, Minas Gerais States (mark 12 in Fig. 2.14) at 1420 m. (o) Sempre-Vivas National Park with open rupestrian grassland on quartzite with Lychnophora sp. (mark 12 in Fig. 2.14) at 1130 m. (p) Serra de São José Environmental Protected Area, Tiradentes, Minas Gerais States, with open rupestrian grassland on micaceous quartzite and schists at 1200 m (q) Pico da Neblina, the highest RG site in Brazil (close to 3000 m) on metarenites of Roraima Group, Amazonas State (mark 1 in Fig. 2.14). (r) Serra do Sol, at 2250 m altitude, on quartzites of the Roraima Group, Roraima State (mark 1 in Fig. 2.14). (s) Serra dos Pacaás Novos, with an altitude of 1050 m, an isolated spot of RG in the middle of the Amazon Forest domain, with metarenites to metapelitic rocks (mark 3 in Fig. 2.14). (t) (mark 1 in Fig. 2.14). (u) Serra Ricardo Franco, in the Brazil-Bolivia border, at Mato Grosso State, where RG occurs on metarenites (mark 4 in Fig. 2.14) at 1030 m. (v) Monte Roraima highest surface (mark 1 in Fig. 2.14), the largest Rupestrian Plateau in the Brazilian Amazonia (Roraima State), at 2850 m. (w) Monte Roraima top surface (2800 m), on Quartzite of the Roraima Group (mark 1 in Fig. 2.14). (x) Serra da Seringa, southeastern Pará State, an isolated RGC on Felsic Granites in the middle of the Caiapó Indigenous Land (mark 7 in Fig. 2.14).

Fig. 2.14
figure 14figure 14figure 14

Phytophysiognomies and landscape features of Rupestrian Grassland Complex (RGC) on different lithologies in Brazil

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schaefer, C.E. et al. (2016). The Physical Environment of Rupestrian Grasslands (Campos Rupestres) in Brazil: Geological, Geomorphological and Pedological Characteristics, and Interplays. In: Fernandes, G. (eds) Ecology and Conservation of Mountaintop grasslands in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-29808-5_2

Download citation

Publish with us

Policies and ethics