Advertisement

The Physical Environment of Rupestrian Grasslands (Campos Rupestres) in Brazil: Geological, Geomorphological and Pedological Characteristics, and Interplays

  • Carlos E.G.R. Schaefer
  • Guilherme R. Corrêa
  • Hugo G. Candido
  • Daniel M. Arruda
  • Jaquelina A. Nunes
  • Raphael W. Araujo
  • Priscyla M.S. Rodrigues
  • Elpídio I. Fernandes Filho
  • Aianã F.S. Pereira
  • Pedro Christo Brandão
  • Andreza V. Neri
Chapter

Abstract

The Rupestrian Grassland is a vegetational complex with grassy to shrubby formations that occur throughout the high mountains of Brazil, usually formed by structurally resistant rocks, little affected by late tectonics, and strongly eroded and weathered under long term geological stability. RGC is closely associated with high altitude landsurfaces, in which several factors have a determinant role: (1) extreme oligotrophy, and acid, nutrient-depleted parent materials; (2) resistance to weathering and erosion (chemical and physical); (3) constant wind exposure; (4) intense fire regime. Variations of RG phytophysiognomies are basically due to soil depth (edaphic factor), drainage and landscape stability and evolution. Landforms (geomorphological attributes) affect the RGC at continental scales (high landsurfaces), regional scales (regional landforms, such as escarpments, valleys, slopes) and local scales (soil depth, stoniness, rockiness, drainage). The most common occurrence of RGC in Brazil is on Quartzite and metarenites, followed by canga and other Fe-rich substrates, igneous rocks and metamorphics, hence displaying a high diversity of substrates, with a major trait of extreme soil oligotrophy and acidity, and crucial variations in soil depth. The occurrence of well-documented areas of RG on Granitic and gneissic terrains imply that even richer rocks, submitted to long term weathering and erosion, can lead to similar soils on Highlands, where rock outcrops are also common (e.g. Caparaó, Itatiaia, Brigadeiro, Serra dos Órgãos). RGC can occur immersed in different domains (Atlantic Forest, Caatinga, Cerrado), regardless of present day climates, since it represents an edaphic climax of long-term development. The widespread distribution of comparable RGC, from Amazonia (Carajás, Roraima, Pacaás Novos, Cachimbo) to the Central Plateau (Santa Barbara, Ricardo Franco, Pirineus) and Northeastern and Southeastern Brazil (Caparaó, Espinhaço, Sincorá, Jacobina, Itatiaia, Serra dos Órgãos, Brigadeiro, Carangola) raises the unresolved question of phylogenetic ancestry, age and similarities (floristic, structural) between those isolated islands of Rupestrian vegetation. These aspects are central to the evolution of Brazilian Biomes, representing key issues to resolve the late Quaternary Refuge Theory controversy, and test the validity of island biogeographical isolation theories.

Keywords

Soil Depth Shallow Soil Band Iron Formation Rocky Outcrop Termite Mound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Carlos Schaefer thanks Vale, CNPq and FAPEMIG for financing long-term studies on Carajás and Iron Quadrangle; thanks are due to Dr. Lilia Santos (Bioma), James Bockheim, and João Ker for many field trips and discussions on RGC ecology. Help for field work Sr. Alexander Castilho (Vale) is greatly appreciated.

References

  1. Ab’Saber AN (1986) Geomorfologia da Região. In: Almeida JR (ed). Carajás: desafio político, ecologia e desenvolvimento. Brasiliense, Brasília, pp. 88–124Google Scholar
  2. Alkmim FF (2015) Geological Background: A Tectonic Panorama of Brazil. In: Vieira BC, Salgado AAR, Santos LJC (eds) Landscapes and landforms of Brazil. Springer, Netherlands, pp 9–17Google Scholar
  3. Almeida-Abreu PA (1995) O Supergrupo Espinhaço da Serra do Espinhaço Meridional (Minas Gerais): o Rifte, a Bacia e o Orógeno. Geonomos 3:1–18Google Scholar
  4. Almeida TE, Souza DT, Salino A, Teles AM (2007) Levantamento florístico e caracterização das formações vegetacionais, Parque Nacional das Sempre-Vivas. Unpub. Technical reportGoogle Scholar
  5. Alves RJV, Silva NG, Oliveira JA, Medeiros D (2014) Circumscribing campo rupestre—megadiverse Brazilian rocky montane savanas. Braz J Biol 74:355–362CrossRefPubMedGoogle Scholar
  6. Barros NF (1979) Growth and foliar nutrient concentrations of Eucalyptus grandis in relation to spodasol properties in South Florida. Ph.D. Dissertation, University of FloridaGoogle Scholar
  7. Benites VM, Sá E, Schaefer CER, Novotny EH, Reis E, Ker JK (2005) Properties of black soil humic acids from high altitude rock complexes in Brazil. Geoderma 127:104–113CrossRefGoogle Scholar
  8. Benites VM, Schaefer CEGR, Simas FNB, Santos HG (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev Bras Bot 30:569–577CrossRefGoogle Scholar
  9. Botrel RT, Oliveira-Filho AT, Rodrigues LA, Curi N (2002) Influencia do solo e topografia sobre as variações da composição florística e estrutura da comunidade arbóreo–arbustiva de uma floresta estacional semidecidual em Ingaí, Mg. Rev Bras Bot 25:195–213CrossRefGoogle Scholar
  10. Butcher R, Byrne M, Crayn DM (2007) Evidence for convergent evolution among phylogenetically distant rare species of Tetratheca (Elaeocarpaceae formerly Tremandraceae) from Western Australia. Aust Syst Bot 20:126–138CrossRefGoogle Scholar
  11. Campos NV, Pereira TAR, Machado MF, Guerra MBB, Tolentino GS, Araújo JS, Rezende MQ, Silva MCNA, Schaefer CEGR (2014) Evaluation of micro-energy dispersive X-ray fluorescence and histochemical tests for aluminium detection in plants from high altitude rocky complexes, Southeast Brazil. An Acad Bras Ciênc 86:285–296CrossRefPubMedGoogle Scholar
  12. Carmo FF, Jacobi CM (2012) As cangas do Quadrilátero Ferrífero. In: Jacobi CM, Carmo FF (eds) Diversidade florística nas cangas do Quadrilátero Ferrífero. IDM, Belo Horizonte, pp 1–13Google Scholar
  13. Dias HCT, Fernandes EIF, Schaefer CEGR, Fontes LEF, Ventorim LB (2002) Geoambientes do Parque Estadual do Ibitipoca, Município de Lima Duarte-MG. R Árv 26:777–786Google Scholar
  14. Diniz JMFDS, Dos Reis AA, Junior FWA, Gomide LR (2014) Detecção da expansão da área minerada no Quadrilátero Ferrífero, Minas Gerais, no período de 1985 a 2011 através de técnicas de sensoriamento remoto. Bol Cien Geod 20:683–700CrossRefGoogle Scholar
  15. Dossin IA, Garcia AJV, Uhlein A, Dossin TM (1987) Facies eólico na Formação Galho do Miguel, Supergrupo Espinhaço-MG. Bol Soc Bras Geol 6:85–96Google Scholar
  16. EMBRAPA—Empresa Brasileira De Pesquisa Agropecuária (1997) Manual de métodos de análise de solo. Centro Nacional de Pesquisas de Solos, Rio de JaneiroGoogle Scholar
  17. Gibson N (2004a) Flora and vegetation of the eastern Goldfields ranges: Part 6. mt manning range. J R Soc West Aust 87:35–47Google Scholar
  18. Gibson N (2004b) Flora and vegetation of the eastern Goldfields ranges: Part 7. middle and south Ironcap, Digger Rock and Hatter Hill. J R Soc West Aust 87:49–62Google Scholar
  19. Gibson N, Yates CJ, Dillon R (2010) Plant communities of the ironstone ranges of South Western Australia: Hotspots for plant diversity and mineral deposits. Biodiv Cons 19:3951–3962CrossRefGoogle Scholar
  20. Gibson N, Meissner R, Markey AS, Thompson WA (2012) Patterns of plant diversity in ironstone ranges in arid south Western Australia. J Arid Environ 77:25–31CrossRefGoogle Scholar
  21. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. John Wiley, Sons Ltd, ChichesterGoogle Scholar
  22. Harley RM, Simmons NA (1986) Florula of Mucugê, Chapada Diamantina—Bahia, Brazil. Royal Botanical Garden, KewGoogle Scholar
  23. IBAMA—Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2003) Plano de manejo para uso múltiplo da Floresta Nacional de Carajás. IBAMA, BrasíliaGoogle Scholar
  24. IBAMA—Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2006) Plano Operativo de prevenção e combate aos incêndios do Parque Nacional das Sempre-Vivas. IBAMA, DiamantinaGoogle Scholar
  25. Jacobi CM, Carmo FF (2011) Life–forms, pollination and seed dispersal syndromes in plant communities on ironstone outcrops, SE, Brazil. Act Bot Bras 25:395–412CrossRefGoogle Scholar
  26. Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: A diverse and endangered Brazilian ecosystem. Biodiv Cons 16:2185–2200CrossRefGoogle Scholar
  27. Jacobi CM, Carmo FF, Vincent RC (2008) Estudo Fitossociológico de uma comunidade vegetal sobre canga com subsídio para a reabilitação de áreas mineradas no Quadrilátero Ferrífero, MG. Rev Arv 32:345–353CrossRefGoogle Scholar
  28. Jacobi CM, Carmo FF, Campos IC (2011) Soaring extinction threats to endemic plants in Brazilian metal-rich regions. Ambio 40:540–543CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lista de Espécies da Flora do Brasil (2015) Jardim Botânico do Rio de Janeiro. Available in. http://floradobrasil.jbrj.gov.br/. Accessed 29 Jan 2016
  30. Markey AS, Dillon SJ (2008) Flora and vegetation of the banded iron formations of the Yilgarn Craton: The central tallering land system. Cons Sci West Aust 7:121–149Google Scholar
  31. Markey AS, Dillon SJ (2009) Flora and vegetation of the banded iron formations of the Yilgarn Craton: Herbert Lukin Ridge (Wiluna). Conserv Sci West Aust 7:391–412Google Scholar
  32. Markey AS, Dillon SJ (2010) Flora and vegetation of the banded iron formations of the Yilgarn Craton: Gullewa. Conserv Sci West Aust 7:531–556Google Scholar
  33. Martinelli G (1989) Campos de, altitude edn. Index, Rio de JaneiroGoogle Scholar
  34. Meirelles ST, Mattos EA, Silva AC (1997) Potential desiccation tolerant vascular plants from southeastern Brazil. Pol J Environ Stud 6:17–21Google Scholar
  35. Meissner R, Caruso Y (2008) Flora and vegetation of banded iron formations of the Yilgam Craton: Koolanooka and Pernjori hills. Cons Sci West Aust 7:73–88Google Scholar
  36. Meissner R, Wright J (2010) Flora and vegetation of banded iron formations on the Yilgarn Craton: South Illaara Greenstone Belt. Conse Sci West Aust 7:605–616Google Scholar
  37. Meissner R, Owen G, Bayliss B (2009) Flora and vegetation of the banded iron formation of the Yilgarn Craton: Robinson Ranges and Mount Gould. Cons Sci West Aust 7:363–376Google Scholar
  38. Mendonça MP, Lins LV (2000) Lista Vermelha das Espécies Ameaçadas de Extinção da Flora de Minas Gerais. Biodiversitas e Fundação ZooBotânica de Belo Horizonte, Belo HorizonteGoogle Scholar
  39. Messias MCTB, Leite MGP, Meira-Neto JA, Kozovits AR, Tavares R (2013) Soil–vegetation relationship in quartzitic and ferruginous Brazilian rocky outcrops. Folia Geobot 48:509–521CrossRefGoogle Scholar
  40. Morellato PC, Rosa NA (1991) Caracterização de alguns tipos de vegetação na região amazônica, Serra dos Carajás. Pará Brasil Rev Bras Bot 14:1–14Google Scholar
  41. Mourão A, Stehmann JR (2007) Levantamento da flora do campo rupestre sobre canga hematítica couraçada remanescente na Mina do Brucutu, Barão de Cocais, Minas Gerais, Brasil. Rodriguésia 58:775–785Google Scholar
  42. Nunes JA, Schaefer CEGR, Ferreira-Júnior WG, NERI AV, Correa, GR, Enright NJ (2015) Soil-vegetation relationships on a banded ironstone island, Carajás Plateau, Brazilian Eastern Amazonia. An Acad Bras Cien 87:2097–2110Google Scholar
  43. Porembski S, Barthlott W, Dorrstock S, Biedinger N (1994) Vegetation of rock outcrops in Guinea: Granite inselbergs, sandstone table mountains and ferricretes—remarks on species numbers and endemism. Flora 189:315–326Google Scholar
  44. Porembski S, Seine R, Barthlott W (1997) Inselberg vegetation and biodiversity of granite outcrops. J Roy Soc West Austral 80:193–197Google Scholar
  45. Porto ML, Silva MFF (1989) Tipos de vegetação metalófila em áreas da Serra de Carajás e de Minas Gerais, Brasil. Act Bot Bras 3:13–21CrossRefGoogle Scholar
  46. Queiroz LP, Sena TSN, Costa MJSL (1996) Flora vascular da Serra da Jibóia, Santa Terezinha. Bahia. I: O campo rupestre. Sitientibus 15:27–40Google Scholar
  47. Rizzini CT (1979) Tratado de fitogeografia do Brasil: Aspectos sociológicos e florísticos. Editora da Universidade de São Paulo, São PauloGoogle Scholar
  48. Rodrigues PMS, Schaefer CEGR, Corrêa GR, Campos PV, Neri AV (2014) Soils, landform and vegetation determine the geoenvironments at a conservation unit in northern Minas Gerais, Brazil. Neotrop Biol Cons 10:31–42Google Scholar
  49. Santos MDC, Varajão AF (2004) Sedimentation and pedogenic features in a clay deposit in Quadrilátero Ferrífero, Minas Gerais, Brazil. An Acad Bras Ciênc 76:147–159CrossRefGoogle Scholar
  50. Sarcinelli TS, Schaeffer CEGR, Lynch LS, Arato HD, Viana JHM, Albuquerque Filho MR Gonçalves TT (2009) Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil. Catena 76:107–113Google Scholar
  51. Schaefer CEGR (2001) Brazilian latosols and their B horizon microstructure as long-term biotic constructs. Soil Res 39:909–926CrossRefGoogle Scholar
  52. Schaefer CEGR (2013) Bases físicas da paisagem brasileira: estrutura geológica, relevo e solos. In: Araújo AP, Alves BJR (eds) Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 1–69Google Scholar
  53. Schaefer CEGR, Gilkes RJ, Fernandes RBA (2004) EDS/SEM study on microaggregates of Brazilian Latosols, in relation to P adsorption and clay fraction attributes. Geoderma 123:69–81CrossRefGoogle Scholar
  54. Schaefer CEGR, MendonçA BAF, Ribeiro ASS (2008) Solos desenvolvidos sobre canga ferruginosa no quadrilaÏtero ferriÏfero, Minas Gerais. Biodiversidade, Conservaçafio e Perspectivas de Sustentabilidade. UFMF/ ICB, Belo Horizonte, SimpoÏsio Afloramentos Ferruginosos no QuadrilaÏtero FerriÏferoGoogle Scholar
  55. Schaefer CEGR, Simas FNB, Mendonça BAF, Saboya AS, Ferreira Júnior WG, Nunes JA, Correa GR (2009) Geodiversidade dos ambientes de canga na região de Carajás– Pará. Technical Report. part 2. Vale Brazilian CompanyGoogle Scholar
  56. Schaefer CEGR, Cândido HG, Corrêa GR, Pereira A, Nunes JA, Souza OF, Marins A, Fernandes-Filho E, Ker JC (2015) Solos desenvolvidos sobre canga ferruginosa no Brasil: Uma revisão crítica e papel ecológico de termiteiros. In: Carmo FF, Kamino LHY (eds) Geossistemas ferruginosos do Brasil: Áreas prioritárias para conservação da diversidade geológica e biológica. Patrimônio cultural e serviços ambientais. 3i, Belo Horizonte, pp. 77–102Google Scholar
  57. Schobbenhaus C, Brito-Neves BB (2003) A geologia do Brasil no contexto da Plataforma Sul-Americana. In: Schobbenhaus C, Vidotti RM, Gonçalves JH (eds) Geologia, tectônica e recursos minerais do Brasil. CPRM, Brasília, pp 5–25Google Scholar
  58. Secco RS, Mesquita AL (1983) Nota sobre a vegetação de canga da Serra Norte. I. Boletim Mus Par Em Goeldi 59:1–13Google Scholar
  59. Semir J (1991) Revisão taxonômica de Lychnophora Mart. Vernoniaceae: Compositae. Ph.D. Thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  60. Silva MFF (1992) Distribuição de metais pesados na vegetação metalófila de Carajás. Act Bot Bras 6:107–22Google Scholar
  61. Silva MFF, Rosa N (1984) estudos botânicos na área do projeto ferro de Carajás, Serra Norte. I—Aspectos ecológicos e vegetacionais dos campos rupestres. In: XXXV Congresso Nacional de Botânica, Sociedade Brasileira Botânica, Manaus, pp. 367–379Google Scholar
  62. Silveira FA, Negreiros D, Barbosa NP, Buisson E, Carmo FF, Carstensen DW, Lambers H (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil. doi:  10.1007/s11104-015-2637-8
  63. Tardy Y, Nahon D (1985) Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe3 + -kaolinite in bauxites and ferricretes: An approach to the mechanism of concretion formation. Am J Sci 285:865–903CrossRefGoogle Scholar
  64. Teixeira WA, Lemos-Filho JP (1998) Metais pesados em folhas de espécies lenhosas colonizadoras de uma área de mineração de ferro em Itabirito, Minas Gerais. Rev Árv 22:381–388Google Scholar
  65. Teixeira WA, Lemos-Filho JP (2002) Fatores edáficos e a colonização de espécies lenhosas em uma cava de mineração de ferro em Itabirito, Minas Gerais. Rev Árv 26:25–33Google Scholar
  66. Valentin C, Herbes JM, Poesen J (1999) Soil and water components of banded vegetation patterns. Catena 37:1–24CrossRefGoogle Scholar
  67. Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. Instituto Brasileiro de Geografia e Estatística, Rio de JaneiroGoogle Scholar
  68. Viana PL, Lombardi JA (2007) Florística e caracterização dos campos rupestres sobre canga na Serra da Calçada, Minas Gerais, Brasil. Rodriguesia 58:159–177Google Scholar
  69. Vincent RC (2004) Florística, fitossociologia e relações entre a vegetação e o solo em área de campos ferruginosos no Quadrilátero Ferrífero, Minas Gerais. Ph.D. Dissertation, Universidade de São PauloGoogle Scholar
  70. Vincent RC, Meguro M (2008) Influence of soil properties on the abundance of plant species in ferruginous rocky soils vegetation, southeastern Brazil. Rev Bras Bot 31:377–388CrossRefGoogle Scholar
  71. Vincent RC, Jacobi CM, Antonini Y (2002) Diversidade na adversidade. Cien Hoje 31:64–67Google Scholar
  72. Yates CJ, Ladd PG, Coates DJ, Mcarthur S (2007) Hierarchies of cause: Understanding rarity in an endemic shrub Verticordia staminosa (Myrtaceae) with a highly restricted distribution. Aust J Bot 55:194–205CrossRefGoogle Scholar
  73. Yates CJ, Gibson N, Pettit NE, Dillon R, Palmer R (2011) The ecological relationships and demography of restricted ironstone endemic plant species: Implications for conservation. Aust J Bot 59:692–700CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carlos E.G.R. Schaefer
    • 1
  • Guilherme R. Corrêa
    • 2
  • Hugo G. Candido
    • 3
  • Daniel M. Arruda
    • 3
  • Jaquelina A. Nunes
    • 4
  • Raphael W. Araujo
    • 1
  • Priscyla M.S. Rodrigues
    • 3
  • Elpídio I. Fernandes Filho
    • 1
  • Aianã F.S. Pereira
    • 3
  • Pedro Christo Brandão
    • 1
  • Andreza V. Neri
    • 3
  1. 1.Departamento de Solos E Nutrição de PlantasUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Instituto de GeografiaUniversidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Unidade Carangola, Praça dos EstudantesUniversidade do Estado de Minas Gerais (UEMG)CarangolaBrazil

Personalised recommendations