Skip to main content

Cerrado to Rupestrian Grasslands: Patterns of Species Distribution and the Forces Shaping Them Along an Altitudinal Gradient

  • Chapter
  • First Online:
Book cover Ecology and Conservation of Mountaintop grasslands in Brazil

Abstract

Due to clear variations in a relatively small area, mountains represent natural laboratories for evolutionary and ecological studies. In a large degree, these variations are driven by changes in climate and soil that occur along altitudinal gradients and influence the ecology, evolution and geography of species. In spite of being old and eroded, the southern Brazilian mountains provide enough variation and heterogeneity to influence species distribution and diversity. The best-known Brazilian mountain range is the Espinhaço (the Backbone mountains). The Espinhaço is a large natural watershed divider of major ecological importance in eastern Brazil. The altitudinal gradient in the Espinhaço Mountains is low when compared to other tall mountains in the world as it only varies from ca. 650 to 2.072 m a.s.l. at the Sun Peak (Pico do Sol). This chapter synthesizes the results of 10 studies that have collectively examined the soil, climate to better understand patterns and processes associated with biodiversity of key groups of organism, including of plants, termites, dung beetles, ants, butterflies, arbuscular mycorrhizal fungi, insect herbivores and birds in an altitudinal gradient (from 800 to 1400 m a.s.l.) at Espinhaço mountain range. In this mountain range, the soils are primarily poor and the vegetation is dominated by rupestrian grasslands, and both are known to vary along the altitudinal gradient hence providing opportunities for variation in the associated organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamczyk S, Kluge J, Gareca Y, Reichle S, Kessler M (2011) The influence of climatic seasonality on the diversity of different tropical pollinator groups. PLoS ONE 6:1–9

    Article  CAS  Google Scholar 

  • Aiba S, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol 140:139–157

    Article  Google Scholar 

  • Alves WDF, Mota AS, Lima RAA, Bellezoni R, Vasconcellos A (2011) Termites as bioindicators of habitat quality in the caatinga, Brazil: is there agreement between structural habitat variables and the sampled assemblages? Neotrop Entomol 40:39–46

    Article  Google Scholar 

  • Ambarli D, Bilgin CC (2014) Effects of landscape, land use and vegetation on bird community composition and diversity in Inner Anatolian steppes. Agr Ecosyst Environ 182:37–46

    Article  Google Scholar 

  • Araújo LM, Fernandes GW (2003) Altitudinal patterns in a tropical ant assemblage and variation in species richness between habitats. Lundiana 4:103–109

    Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. pollination mechanisms and altitudinal variation. Am J Bot 69:82–97

    Article  Google Scholar 

  • Ayoade JO (2010) Introdução a Climatologia para os Trópicos. Bertrand, Rio de Janeiro

    Google Scholar 

  • Baguette M, Clobert J, Schtickzelle N (2011) Metapopulation dynamics of the bog fritillary butterfly: experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 34:170–176

    Article  Google Scholar 

  • Bale J, Masters G, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JE, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt A, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chan Biol 8:1–16

    Article  Google Scholar 

  • Barbosa M, Fernandes GW (2014) Bottom-up effects on gall distribution. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 99–113

    Google Scholar 

  • Barbosa NPU, Fernandes GW, Sanchez-Azofeifa A (2015) A relict species restricted to a quartzitic mountain in tropical America: an exemplo of microrefugium? Acta Bot Bras 29:299–309

    Article  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, Hong Kong

    Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climate change at high elevation sites: an overview. Clim Chan 36:233–251

    Article  Google Scholar 

  • Berbara RLL, De Sousa FA, Fonseca HMA (2006) Fungos micorrízicos arbusculares: muito além da nutrição. In: Fernandes MS (ed) Nutrição Mineral de Plantas. SBCS, Viçosa, pp 53–88

    Google Scholar 

  • Bezerra-Gusmão MA, Marinho RA, Kogiso KA, Bandeira AG, Barbosa MRV (2013) Nest dynamics of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae) and its association with the supporting vegetation in a semiarid area, northeast, Brazil. J Arid Environ 91:1–6

    Article  Google Scholar 

  • Bhardwaj M, Uniyal VP, Sanyal AK, Singh AP (2012) Butterfly communities along an elevational gradient in the Tons Valley, Western Himalayas: implications of rapid assessment for insect conservation. J Asia Pac Entomol 15:207–217

    Article  Google Scholar 

  • Bharti H, Sharma YP, Bharti M, Pfeiffer M (2013) Ant species richness, endemicity and functional groups, along an elevational gradient in the Himalayas. Asian Myrmecol 5:79–101

    Google Scholar 

  • Bishop TR, Robertson MP, Rensburg BJ, Parr CL (2014) Elevation—diversity patterns through space and time: ant communities of the Maloti-Drakensberg mountains of southern Africa. J Biogeogr 41:1–13

    Article  Google Scholar 

  • Blanche KR (1994) Insect induced galls on Australian vegetation. In: Price PW, Mattson WJ, Baranchikov Y (eds) The ecology and evolution of gall-forming insects. Forest Service US Department of Agriculture, St. Paul, pp 49–55

    Google Scholar 

  • Blanche KR, Ludwig JA (2001) Species richness of gall inducing insects and host plants along an altitudinal gradient in Big Bend National Park, Texas. Am Midl Nat 145:219–232

    Article  Google Scholar 

  • Brandão CRF, Silva RR, Feitosa RM (2011) Cerrado ground–dwelling ants (Hymenoptera: Formicidae) as indicators of edge effects. Zool 28:379–387

    Google Scholar 

  • Brown JH, Lomolino MV (1998) Biogeography. Sinauer, Sunderland

    Google Scholar 

  • Bruhl CA, Mohamed M, Linsenmair KE (1999) Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. J Trop Ecol 15:265–277

    Article  Google Scholar 

  • Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci USA 105:11505–11511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carneiro E, Mielke OHH, Casagrande MM, Fiedler K (2014a) Skipper richness (Hesperiidae) along elevational gradients in Brazilian Atlantic Forest. Neotrop Entomol 43:27–38

    Article  Google Scholar 

  • Carneiro MAA, Coelho MS, Fernandes GW (2014b) Galls in Brazilian mountains: new reports and perspectives. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 273–293

    Google Scholar 

  • Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high–altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19

    Article  Google Scholar 

  • Carvalho F, Godoy EL, Lisboa FJG, Moreira FMS, Souza FA, Berbara RLL, Fernandes GW (2014) Relationship between physical and chemical soil attributes and plant species diversity in tropical mountain ecosystems from Brazil. J Mt Sci 11:875–883

    Article  Google Scholar 

  • Connor EF, Taverner MP (1997) The evolution and adaptive significance of the leaf–mining habit. Oikos 79:6–25

    Article  Google Scholar 

  • Costa FV, Mello R, Lana CT, Neves FS (2015) Ant fauna in megadiverse mountains: a checklist for the rocky grasslands. Sociobiol 62:228–245

    Google Scholar 

  • Coutinho ES, Fernandes GW, Berbara RLL, Valério HM, Goto BT (2015) Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 25:627–638

    Article  PubMed  Google Scholar 

  • Cumbrera AV (1998) Diversidad de insectos minadores en un bosque tropical. Dissertation, Universidad de Panama

    Google Scholar 

  • Davies AB, Eggleton P, van Rensburg BJ, Parr CL (2015) Seasonal activity patterns of African savanna termites vary across a rainfall gradient. Ins Soc 62:157–165

    Article  Google Scholar 

  • Davis ALV, Scholtz CH (2001) Historical vs. ecological factors influencing global patterns of scarabaeine dung beetle diversity. Div Dist 7:161–174

    Article  Google Scholar 

  • Delabie JH, Fisher BL, Majer Wright IW (2000) Sampling effort and choice of methods. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian institution press, Washington and London, pp 145–154

    Google Scholar 

  • DeVries PJ (1987) The butterflies of Costa Rica and their natural history. Vol I: Papilionidae, Pieridae, Nymphalidae. Princeton University Press, New Jersey, p 456

    Google Scholar 

  • Donovan SE, Eggleton P, Martin A (2002) Species composition of termites of the Nyika plateau forests, northern Malawi, over an altitudinal gradient. Afr J Ecol 40:379–385

    Article  Google Scholar 

  • Dossin IA, Dossin TM, Chaves MLSC (1990) Compartimentação estratigráfica do supergrupo Espinhaço em Minas Gerais - os grupos Diamantina e Conselheiro Mata. Rev Bras Geoc 20:178–186

    Google Scholar 

  • Dury GH (1972) High temperature extremes in Austrália. Ann Assoc Am Geo 62:388–400

    Article  Google Scholar 

  • Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38:201–341

    Article  Google Scholar 

  • Escobar F, Lobo JM, Halffter G (2005) Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. Glob Ecol Biogeogr 14:327–337

    Article  Google Scholar 

  • Faeth SH, Mopper S, Simberloff D (1981) Abundances and diversity of leaf–mining insects on three oak host species: effects of host plant phenology and nitrogen content of leaves. Oikos 37:238–251

    Article  Google Scholar 

  • Fernandes GW (1992) A gradient analysis of plant forms from northern Arizona. J Ariz-Nev Acad Sci 25:21–30

    Google Scholar 

  • Fernandes GW, Lara ACF (1993) Diversity of Indonesian gall–forming herbivores along altitudinal gradients. Biodiv Lett 1:186–192

    Article  Google Scholar 

  • Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76:161–167

    Article  Google Scholar 

  • Fernandes GW, Price PW (1991) Comparison of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115

    Google Scholar 

  • Fernandes GW, Lara ACF, Price PW (1994) The geography of galling insects and the mechanisms resulting in patterns. In: Price PW, Mattson WJ, Baranchikov Y (eds) Gall–forming insects: ecology, physiology and evolution. Forest Service US Department of Agriculture, St. Paul, pp 42–48

    Google Scholar 

  • Fernandes GW, Carneiro MAA, Lara ACF, Allain LR, Andrade GI, Julião GR, Reis TR, Silva IM (1996) Galling insects on neotropical species of Baccharis (Asteraceae). Trop Zool 9:315–332

    Article  Google Scholar 

  • Fernandes GW, Castro FMC, Faira ML, Marques ESA, Greco MKB (2004) Effects of hygrothermal stress, plant richness, and architecture on mining insect diversity. Biotropica 36:240–247

    Google Scholar 

  • Fernandes GW, Silva JO, Espírito-Santo MM, Fagundes M, Oki Y, Carneiro MAA (2014) Baccharis: A neotropical model system to study insect plant interactions. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 193–219

    Google Scholar 

  • Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92:797–804

    Article  PubMed  Google Scholar 

  • Fisher BL (1998) Ant diversity patterns along an elevational gradient in the Reserve Special d’Anjanaharibesud and on the western Masoala Peninsula, Madagascar. Field Zool 90:39–67

    Google Scholar 

  • Fritzsons E, Mantovani LE, Aguiar AV (2008) Relação entre altitude e temperatura: uma contribuição ao zoneamento climático no estado do Paraná. Rev Est Amb 10:49–64

    Google Scholar 

  • Frizzo TLM, Campos RI, Vasconcelos HL (2011) Contrasting effects of fire on arboreal and ground–dwelling ant communities of a neotropical Savanna. Biotropica 44:1–8

    Google Scholar 

  • Gagné RJ (1994) The gall midges of the neotropical region. Cornell University Press, Ithaca

    Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradientes. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Gerold G, Schawe M, Bach K (2008) Hydrometeorologic, pedologic and vegetation patterns along an elevational transect in the montane forest of the Bolivian Yungas. Erde 139:141–168

    Google Scholar 

  • Glarizin GE (1997) Precipitation distribution with altitude. Theor Appl Climatol 58:141–145

    Article  Google Scholar 

  • Gonçalves-Alvim SJ, Fernandes GW (2001) Biodiversity of galling insects: historical, community and habitat effects in four neotropical savannas. Biodiv Cons 10:79–98

    Article  Google Scholar 

  • Halffter G, Edmonds WD (1982) The nesting behaviour of dung beetles (Scarabaeinae): an ecological and evolutive approach. Instituto de Ecología, México

    Google Scholar 

  • Hamilton AC (1975) A quantitative analysis of altitudinal zonation in Uganda forests. Vegetatio 30:99–106

    Article  Google Scholar 

  • Hering EM (1951) Biology of the leaf miners. Junk, The Hague

    Book  Google Scholar 

  • Herzog SK, Hamel-Leigue AC, Larsen TH, Mann DJ, Soria-Auza RW, Gill BD, Edmonds WD, Spector S (2013) Elevational distribution and conservation biogeography of Phanaeine dung beetles (Coleoptera: Scarabaeinae) in Bolivia. PLoS ONE. doi:10.1371/journal.pone.0064963

    Google Scholar 

  • Holland PG, Steyn DG (1975) Vegetational responses to latitudinal in slope angle and aspect. J Biogeog 179–183

    Google Scholar 

  • Holt EG (1928) An ornithological survey of the Serra do Itatiaya, Brazil. Bull Amer Mus Nat Hist 57:251–326

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Tren Ecol Evol 15:56–61

    Article  Google Scholar 

  • Hussain MZ, Malik NZ (2012) High altitude forest composition diversity and its component in a part of Ganga Chotti and Bedori Hills District Bagh. Azad Jammu and Kashmir Pakistan. AGD Land Environ 6:31–40

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Core writing team. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the Fifth Assessment report of the Intergovernmental panel on climate change. IPCC, Switzerland

    Google Scholar 

  • Joly CA, Assis MA, Bernacci LC, Tamashiro JY, Campos MCR, Gomes JAMA, Lacerda MS, Santos FAM, Pedroni F, Pereira LS, Padgurshi MCG, Prata EMB, Ramos E, Torres RB, Rochelle A, Martins FR, Alves LF, Vieira SA, Martinelli LA, Camargo PB, Aidar MPM, Eisenlohr PV, Simões E, Villani JP, Belinello R (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:125–145

    Article  Google Scholar 

  • Jones DT, Eggleton P (2000) Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. J Appl Ecol 37:191–203

    Article  Google Scholar 

  • Julião GR, Venticique EM, Fernandes GW, Price PW (2014) Unexpected hight diversity of galling insects in the Amazonian upper canopy: the savanna out there. PLoS ONE 9(12):e114986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitayama K (1992) An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149–171

    Article  Google Scholar 

  • Korner C (2007) The use of “altitude” in ecological research. Trend Ecol Evol 22:569–574

    Article  Google Scholar 

  • Lara ACF, Fernandes GW, Gonçalves-Alvim SJ (2002) Tests of hypotheses on patterns of gall distribution along an altitudinal gradient. Trop Zool 15:219–232

    Article  Google Scholar 

  • Leuschner C, Moser G, Bertsch C, Roderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Bas Appl Ecol 8:219–230

    Article  Google Scholar 

  • Levanoni O, Levin N, Pe’er G, Turbé A, Kark S (2011) Can we predict butterfly diversity along an elevation gradient from space? Ecography 34:372–383

    Article  Google Scholar 

  • Lewis OT, Wilson RJ, Harper MC (1998) Endemic butterflies of Grande Comore: habitat preferences and conservation priorities. Biol Cons 85:113–121

    Article  Google Scholar 

  • Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 84:137–152

    Article  Google Scholar 

  • Lisboa FJG, Chaer G, Fernandes MF, Berbara RLL, Madari BE (2014) The match between microbial community structure and soil properties is modulated by land use types and sample origin within an integrated agroecosystem. Soil Biol Biochem 78:97–118

    Article  CAS  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1057

    Article  CAS  PubMed  Google Scholar 

  • Lobo JM, Halffter G (2000) Biogeographical and ecological factors affecting the altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera: Scarabaeoidea): a comparative study. Ann Entomol Soc Am 93:115–126

    Article  Google Scholar 

  • Loiselle BA, Blake JG (1991) Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72:180–183

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species–density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Longino JT, Colwell RK (2011) Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2:1–20

    Article  Google Scholar 

  • Louzada J, Lima AP, Matavelli R, Zambaldi L, Barlow J (2010) Community structure of dung beetles in Amazonian savannas: role of fire disturbance, vegetation and landscape structure. Land Ecol 25:631–641

    Article  Google Scholar 

  • MacArthur RH, Recher H, Cody M (1966) On the relation between habitat selection and species diversity. Am Nat 100:319–332

    Article  Google Scholar 

  • Madeira AJ, Fernandes WG (1999) Reprodutive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó, Brasil. J Trop Ecol 15:463–479

    Article  Google Scholar 

  • Malsch AKF, Fiala B, Maschwitz U, Mohamed M, Nais J, Linsenmair KE (2008) An analysis of declining ant species richness with increasing elevation at Mount Kinabalu, Sabah, Borneo. Asian Myrmecol 2:33–49

    Google Scholar 

  • McCain CM (2005) Elevational gradients in diversity of small mammals. Ecology 86:366–372

    Article  Google Scholar 

  • McCain CM (2007) Area and mammalian elevational diversity. Ecology 88:76–86

    Article  PubMed  Google Scholar 

  • McCoy ED (1990) The distribution of insects along elevational gradients. Oikos 58:313–322

    Article  Google Scholar 

  • Melo-Júnior TA, Vasconcelos MF, Fernandes GW, Marini M (2001) Bird species distribution and conservation in Serra do Cipó, Minas Gerais, Brazil. Bird Cons Int 11:189–204

    Google Scholar 

  • Mendonça F, Danni-Oliveira IM (2007) Climatologia – Noções básicas e climas do Brasil. Oficina e Textos, São Paulo

    Google Scholar 

  • Milanesi MA, Galvani E (2011) Efeito orográfico na Ilha de São Sebastião (Ilhabela – SP). Rev Bras Climatol 9:68–79

    Google Scholar 

  • Miura T, Matsumoto T (1997) Diet and nest material of the processional termite Hospitalitermes, and cohabitation of Termes (Isoptera, Termitidae) on Borneo Island. Ins Soc 44:267–275

    Article  Google Scholar 

  • Molina-Martinez A, León-Cortés JL, Regan HM (2013) Climatic and geometric constraints as driving factors of butterfly species richness along a neotropical elevational gradient. J Ins Cons 17:1169–1180

    Article  Google Scholar 

  • Mota NM, Rezende VL, Mota GS, Fernandes GW, Nunes YRF (2016) Driving forces along an altitudinal gradient in the regeneration component of the rupestrian grassland complex at Serra do Cipó, Brazil. Rev Braz Bot (in review)

    Google Scholar 

  • Munyai TC, Foord SH (2012) Ants on a mountain: spatial, environmental and habitat associations along an altitudinal transect in a centre of endemism. J Ins Cons 16:677–695

    Article  Google Scholar 

  • Navarro AGS (1992) Altitudinal distribution of birds in the Sierra Madre del Sur, Guerrero, Mexico. Condor 94:29–39

    Article  Google Scholar 

  • Needham JG, Frost SW, Tothill BH (1928) Leaf–mining insects. Williams and Williams, Baltimore

    Google Scholar 

  • Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Cons 141:1461–1474

    Article  Google Scholar 

  • Nichols E, Gardner TA, Peres S, Spector S (2009) Co–declines in large mammals and dung beetles: an impending ecological cascade. Oikos 118:481–487

    Article  Google Scholar 

  • Nunes CA (2015) Besouros rola-bostas (Coleoptera: Scarabaeidae: Scarabaeinae) e suas funções ecológicas ao longo de um gradiente altitudinal tropical. MSc Dissertation, Universidade Federal de Minas Gerais

    Google Scholar 

  • Pacheco R, Vasconcelos HL (2012) Habitat diversity enhances ant diversity in a naturally heterogeneous Brazilian landscape. Biodiv Cons 21:797–809

    Article  Google Scholar 

  • Palin OF, Eggleton P, Malhi Y, Girardin CAJ, Rozas-Dávila A, Parr CL (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43:100–107

    Article  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  CAS  PubMed  Google Scholar 

  • Price PW (1991) Patterns in comunities along latitudinal gradients. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 51–69

    Google Scholar 

  • Price PW, Fernandes GW, Lara ACF, Brawn J, Barrios H, Wright MG, Ribeiro SP, Rothcliff N (1998) Global patterns in local number of insect galling species. J Biogeogr 25:581–592

    Article  Google Scholar 

  • Pyrcz TW, Wojtusiak J, Garlacz R (2009) Diversity and distribution patterns of Pronophilina butterflies (Lepidoptera: Nymphalidae: Satyrinae) along an altitudinal transect in North-Western Ecuador. Neotrop Entomol 38:716–726

    Article  PubMed  Google Scholar 

  • Quintino AV (2014) Riqueza de espécies de térmitas e sua relação com a distribuição de recursos ao longo de um gradiente altimontano adverso nos trópicos. Dissertation, Universidade Estadual de Montes Claros

    Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Rapp JM, Silman MR (2012) Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Clim Res 55:17–32

    Article  Google Scholar 

  • Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Aust Ecol 28:305–314

    Article  Google Scholar 

  • Ribeiro SP (2003) Insect herbivores in the canopies of savannas and rainforests. In: Basset Y, Novotny V, Miller S, Kitching R (eds) Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge press, New York, pp 348–359

    Google Scholar 

  • Ribeiro KT, Fernandes GW (2000) Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecol 147:205–218

    Article  Google Scholar 

  • Ribeiro SP, Pimenta HR, Fernandes GW (1994) Herbivory by chewing and sucking insects on Tabebuia ochracea. Biotropica 26:302–307

    Article  Google Scholar 

  • Ricklefs RE (2013) A economia da natureza. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Samson DA, Rickart EA, Gonzales PC (1997) Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica 29:349–363

    Article  Google Scholar 

  • Sanchez-Rodriguez JF, Baz A (1995) The effects of elevation on the butterfly communities of a Mediterranean mountain, Sierra de Javalambre, central Spain. J Lepid Soc 49:192–207

    Google Scholar 

  • Sanders NJ, Lessard JP, Fitzpatrick MC, Dunn RR (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob Ecol Biogeogr 16:640–649

    Article  Google Scholar 

  • Sang W (2009) Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecol Res 24:303–314

    Article  Google Scholar 

  • Sawchik J, Dufrêne M, Lebrun P (2003) Estimation of habitat quality based on plant community, and effects of isolation in a network of butterfly habitat patches. Acta Oecol 24:25–33

    Article  Google Scholar 

  • Schnepf J (2010) Diversity of diurnal Lepidoptera across an elevational gradient above the timberline: a case study from the Austrian Alps. Dissertation, University Wein

    Google Scholar 

  • Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  PubMed  CAS  Google Scholar 

  • Scott DA, Brooke M (1985) The endangered avifauna of southeastern Brazil: a report on the BOU/WWF expeditions of 1980/81 and 1981/82. ICBP Tech Pub 4:115–139

    Google Scholar 

  • Smith SE, Read JD (1997) Mycorrhizal symbiosis, 2nd edn. Academic press, New York

    Google Scholar 

  • Speight MR, Hunter MD, Watt AD (2008) Ecology of insects: concepts and applications, 2nd edn. Blackwell science, Oxford

    Google Scholar 

  • Stefanescu C, Herrando S, Páramo F (2004) Butterfly species richness in the north-west Mediterranean basin: the role of natural and human-induced factors. J Biogeogr 31:905–915

    Article  Google Scholar 

  • Stirnemann IA, Ikin K, Gibbons P, Blanchard W, Lindenmayer DB (2015) Measuring habitat heterogeneity reveals new insights into bird community composition. Oecologia 177:733–746

    Article  PubMed  Google Scholar 

  • Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668

    Article  CAS  PubMed  Google Scholar 

  • Tantowijoyo W, Hoffman AA (2010) Identifying factors determining the altitudinal distribution of the invasive pest leafminers Liriomyza huidobrensis and Liriomyza sativae. Entomol Exp Appl 135:141–153

    Article  Google Scholar 

  • Tati-Subahar SS, Amasya AF, Choesin DN (2007) Butterfly (Lepidoptera: Hopalocera) distribution along an altitudinal gradient on mount Tangkuban Parahu, west Java, Indonesia. Raffles B Zool 55:175–178

    Google Scholar 

  • Terborgh J (1971) Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of Cordillera Vilcabamba. Ecology 52:23–40

    Article  Google Scholar 

  • Terborgh J (1977) Bird species diversity on an Andean elevational gradient. Ecol 58:1007–1019

    Article  Google Scholar 

  • Thuiller W, Layorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos MF, Lopes LE, Hoffmann D (2007) Dieta e comportamento deforrageamento de Oreophylax moreirae (Aves: Furnariidae) na Serra do Caraça, Minas Gerais, Brasil. Rev Bras Ornitol 15:439–442

    Google Scholar 

  • Veneklaas EJ, Van Ek R (1990) Rainfall interception in two tropical montane rain forests, Colombia. Hydrol Proc 4:311–326

    Article  Google Scholar 

  • Wang G, Zhou G, Yang L, Li Z (2002) Distribution species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecol 165:169–181

    Article  Google Scholar 

  • Waring GL, Price PW (1990) Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol Entomol 15:87–95

    Article  Google Scholar 

  • Whitfield GH, Carruthers RI, Lampert EP, Haynes DL (1985) Spatial and temporal distribution of plant damage caused by the onion maggot (Diptera: Anthomyiidae). Environ Entomol 14:262–266

    Article  Google Scholar 

  • Whittaker RH (1956) Vegetation of the great Smoky Mountains. Ecol Monogr 26:1–80

    Article  Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Chan Biol 13:1873–1887

    Article  Google Scholar 

  • Wolda H (1987) Altitude, habitat and tropical insect diversity. Biol J Linn Soc 30:313–323

    Article  Google Scholar 

  • Wright MG, Sanways MJ (1996) Gall–insect species richness in African Fynbos and Karoo vegetation: the importance of plant species richness. Biodiv Lett 3:151–155

    Article  Google Scholar 

  • Wright MG, Sanways MJ (1998) Insect species richness in a diverse flora: gall–insects in the Cape Floristic Region, South Africa. Oecologia 115:427–433

    Article  Google Scholar 

Download references

Acknowledgements

We thank the many stakeholders that have actively participated in this study by providing the land for the research, logistics, and even engaged in seminars and workshops: Serra Morena Inn, Cedro Cachoeira Textile Industry, Vellozia Reserve, Pedra do Elefante Inn, Eduardo C. Costa Jr, Planta Ltda, and Serra do Cipó National Park for logistical support. We are thankful to CNPq/PELD, ComCerrado /MCT and FAPEMIG for several grants that have supported this study, to José Eugênio C. Figueira for statistical advice, to Campestris for support in the editing and formatting some of the illustrations, and to OnsetBrasil for continued field support with the climatic stations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wilson Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernandes, G.W. et al. (2016). Cerrado to Rupestrian Grasslands: Patterns of Species Distribution and the Forces Shaping Them Along an Altitudinal Gradient. In: Fernandes, G. (eds) Ecology and Conservation of Mountaintop grasslands in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-29808-5_15

Download citation

Publish with us

Policies and ethics