The Megadiverse Rupestrian Grassland

Chapter

Abstract

The Rupestrian Grassland is an ancient ecosystem characterized by high herbaceous species richness, high endemism, and unique species compositions. The vegetation and habitats in the Rupestrian Grassland are maintained by edapho-climatic factors that limit tree growth and distribution, frequent fires, and, possibly, herbivory. The synergism of the environmental filters caused by these factors and interactions amongst species are the drivers of biodiversity and ecosystem services in this megadiverse environment. But this natural heritage is under threat due to human induced disturbances and by climate change . This book brings to light the most updated synthesis on this unique and paramount ecosystem.

Notes

Acknowledgements

I thank FAPEMIG, CAPES and CNPq for the continuous support of my research that has led to this synthesis. I especially thank Gerhard Overback, José E.C. Figueira and Daniel Negreiros for reading the manuscript and for various suggestions.

References

  1. Barbosa ALM, Sad JHG (1973) Tectonic control of sedimentation and trace-element distribution in iron ores in central Minas Gerais (Brazil). In: Proceedings of kiev symposium 1970, Genesis of precambrian iron and manganese deposits, UNESCO, pp. 125–131Google Scholar
  2. Barbosa BC, Cappi VS, Ribeiro SP, Fernandes GW (2014) Avaliação da capacidade de rebrotamento pós-distúrbio das plantas lenhosas típicas dos campos rupestres. Ecol Aust 24:350–355Google Scholar
  3. Barbosa NPU, Fernandes GW, Sanchez-Azofeifa A (2015) A relict species restricted to a quartzitic mountain in tropical America: An example of microrefugium? Acta Bot Bras 29:299–309CrossRefGoogle Scholar
  4. Belo MB, Negreiros D, Fernandes GW, Silveira FAO, Ranieri BD, Morellato PC (2013) Fenologia reprodutiva e vegetativa de arbustos endêmicos de campo rupestre na Serra do Cipó, Sudeste do Brasil. Rodriguesia 64:817–828CrossRefGoogle Scholar
  5. Benites VM, Schaefer CER, Simas FNB, Santos HG (2007) Soil associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev Bras Bot 30:569–577CrossRefGoogle Scholar
  6. Brown JH, Lomolino MV (1998) Biogeography. Sinauer, SunderlandGoogle Scholar
  7. Carmo FF, Jacobi CM (2013) A vegetação de canga no Quadrilátero Ferrífero, Minas Gerais: Caracterização e contexto fitogeográfico. Rodriguésia 64:527–541CrossRefGoogle Scholar
  8. Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19CrossRefGoogle Scholar
  9. Carvalho F, Godoy EL, Lisboa FJG, Moreira FMS, Souza FA, Berbara RLL, Fernandes GW (2014) Relationship between physical and chemical soil attributes and plant species diversity in tropical mountain ecosystems from Brazil. J Mt Sci 11:875–883CrossRefGoogle Scholar
  10. Coutinho ES, Fernandes GW, Berbara RLL, Valério HM, Goto BT (2015) Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 25:627–638.PubMedGoogle Scholar
  11. Domingues SA, Karez CS, Biondini IVF, Andrade MA, Fernandes GW (2012) Economic environmental management tools in the Serra do Espinhaço Biosphere Reserve. J Sust Develop 5:180–191Google Scholar
  12. Dorr JVN (1969) Physiographic, stratigraphic, and structural development of the Quadrilátero Ferrífero Minas Gerais Brazil. Geological survey professional paper 641-a, United States Printing Office, Washington, DCGoogle Scholar
  13. Echternacht L, Trovó M, Oliveira CT, Pirani JR (2011) Areas of endemism in the Espinhaço range in Minas Gerais, Brazil. Flora 206:782–791CrossRefGoogle Scholar
  14. Fernandes GW, Barbosa NPU, Negreiros D, Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Nat Cons 12:162–165CrossRefGoogle Scholar
  15. Figueira JEC, Vasconcellos-Neto J, Jolivet P (1994) Une nouvelle plante protocarnivore Paepalanthus bromelioides Silv. (Eriocaulaceae) du Brésil. Revue d’Écologie 49:3–9Google Scholar
  16. Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P, Soares-Filho B, Barreto P, Micol L, Walker NF (2015) Brazil’s soy moratorium. Science 347:377–378CrossRefPubMedGoogle Scholar
  17. Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region eastern Brazil. In: Davis SD et al. (eds). Centres of plant diversity: A guide and strategy for their conservation, WWF/IUCN, Cambridge, vol 3. pp. 397–404Google Scholar
  18. Goodland RJ (1975) The tropical origin of ecology: Eugen warming’s jubilee. Oikos 26:240–245CrossRefGoogle Scholar
  19. Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: A diverse and endangered Brazilian ecosystem. Biodiv Cons 16:2185–2200CrossRefGoogle Scholar
  20. Jolivet P, Vasconcellos-Neto J (1993) Convergence chez les plantes carnivores. La Recherche 24:456–458Google Scholar
  21. Le Stradic S, Buisson E, Fernandes GW (2015) Vegetation composition and structure of some Neotropical mountain grasslands in Brazil. J Mt Sci 12:864–877CrossRefGoogle Scholar
  22. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  23. Negreiros D, Le Stradic S, Fernandes GW, Rennó HC (2014) CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecol 215:379–388CrossRefGoogle Scholar
  24. Nishi AH, Vasconcellos-Neto J, Romero GQ (2013) The role of multiple partners in a digestive mutualism with a protocarnivorous plant. Ann Bot 111:143–150CrossRefPubMedPubMedCentralGoogle Scholar
  25. Parr CL, Lehmann CER, Bond WJ, Hoffmann WA, Andersen AN (2014) Tropical grassy biomes: Misunderstood, neglected, and under threat. Trend Ecol Evol 29:205–213CrossRefGoogle Scholar
  26. Putz FE, Redford KH (2009) Dangers of carbon-based conservation. Glob Environ Chan 19:400–401CrossRefGoogle Scholar
  27. Rapini A, Ribeiro PL, Lambert S, Pirani JR (2008) A flora dos campos rupestres da Cadeia do Espinhaço. Megadiv 4:16–24Google Scholar
  28. Ribeiro KT, Fernandes GW (2000) Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecol 147:205–218CrossRefGoogle Scholar
  29. Rizzini CT (1979) Tratado de fitogeografia do Brasil. 2nd ed. São Paulo/EDUSPGoogle Scholar
  30. Sanchez-Azofeifa A, Power J, Fernandes GW, Quesada M (2013) Tropical dry forest in the Americas: Ecology, conservation and management. CRC Press, Boca RatonCrossRefGoogle Scholar
  31. Silveira FAO, Negreiros D, Barbosa NPU, Buisson E, Carmo F, Carstensen DW, Conceição AA, Cornelissen TG, Echternacht L, Fernandes GW, Garcia QS, Guerra TJ, Jacobi CM, Lemos-Filho JP, Le Stradic S, Morellato LPC, Neves FS, Oliveira RS, Schaefer CE, Viana PL, Lambers H (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: A neglected conservation priority. Plant Soil doi:  10.1007/s11104-015-2637-8
  32. Skirycz A, Castilho A, Chaparro C, Carvalho N, Tzotzos, Siqueira JO (2014) Canga biodiversity, a matter of mining. Front Plant Sci 5:653. doi: 10.3389/fpls.2014.00653 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tolbert GE, Tremaine JW, Melcher GC, Gomes CB (1973). Geology and iron ore deposits of Serra dos Carajás, Pará, Brazil. In: Proceedings of kiev symposium 1970, Genesis of Precambrian iron and manganese deposits, UNESCO, pp. 271–280Google Scholar
  34. Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S, Mahy G, Negreiros D, Overbeck GE, Veldman RG, Zaloumis NP, Putz FE, Bond WJ (2015a) Toward an old-growth concept for grasslands, savannas, and woodlands. Front Ecol Environ 13:154–162CrossRefGoogle Scholar
  35. Veldman JW, Overbeck GE, Negreiros D, Mahy G, Le Stradic S, Fernandes GW, Durigan G, Buisson E, Putz FE, Bond WJ (2015b) Tyranny of trees in grassy biomes. Science 347:484–485CrossRefPubMedGoogle Scholar
  36. Veldman JW, Overbeck GE, Negreiros D, Mahy G, Le Stradic S, Fernandes GW, Durigan G, Buisson E, Putz FE, Bond WJ (2015c) Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience doi:  10.1093/biosci/biv118
  37. Warming E (1892) Lagoa Santa: Et Bidragtil den Biologiske Plantegeografi med en Fortegnelse over Lagoa Santas Hvirveldyr—Naturvidenskabeligog Mathematisk Afdeling, 6. Rk. vol. 6, pp. 153−488Google Scholar
  38. Warming E (1895) Plantesamfund—Grundtrækaf den økologiske Plantegeografi. P.G Philipsens Forlag, Kjøbenhavn. p. 335Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Ecologia Evolutiva & Biodiversidade/DBGICB/Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of BiologyStanford UniversityStanfordUSA

Personalised recommendations