Skip to main content

B Cell Biology

  • Chapter
  • First Online:
Clinical and Basic Immunodermatology

Abstract

B cells, central players in the adaptive immune response, produce antibodies and are essential for protective immunity. This chapter provides an overview of the current understanding of B cell biology for the dermatologist and cutaneous biologist. Antibody structure and function are reviewed in detail, outlining the varied antigenic targets of antibodies, enumerating the many effector functions of antibodies and describing how these effector functions differ by antibody isotype. Additionally, an overview of the complement system is provided, highlighting its role in the immune response and mechanisms of its activation. B cell development is summarized, with a focus on generation of the antibody repertoire and establishment of tolerance to self-antigens. Current therapeutic mechanisms of targeted B cell depletion are described and biological caveats of their use are discussed. An overview of the B cell response to infection is presented, highlighting the role of B cell – T cell interactions, formation of the germinal center response and the role of regulatory B cells. Finally, the formation, function and maintenance of long-lived plasma cells and memory B cells, key components of durable immunity, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet. 2010;11(1):47–59.

    Article  CAS  PubMed  Google Scholar 

  2. Rhodes J. The end of plagues: the global battle against infectious diseases. New York: Palgrave MacMillan; 2013.

    Google Scholar 

  3. Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK. Duration of antiviral immunity after smallpox vaccination. Nat Med. 2003;9(9):1131–7.

    Article  CAS  PubMed  Google Scholar 

  4. Siegrist CA. Vaccine immunology. In: Plotkin S, Orenstein W, Offit P, editors. Vaccines. Philadelphia: Saunders; 2008. p. 17–35.

    Google Scholar 

  5. Taub DD, Ershler WB, Janowski M, Artz A, Key ML, McKelvey J, Muller D, Moss B, Ferrucci L, Duffey PL, Longo DL. Immunity from smallpox vaccine persists for decades: a longitudinal study. Am J Med. 2008;121(12):1058–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amanna IJ, Carlson NE, Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med. 2007;357(19):1903–15.

    Article  CAS  PubMed  Google Scholar 

  7. Tiselius A, Kabat EA. Electrophoresis of immune serum. Science. 1938;87(2262):416–7.

    Article  CAS  PubMed  Google Scholar 

  8. Cooper MD, Peterson RD, Good RA. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature. 1965;205:143–6.

    Article  CAS  PubMed  Google Scholar 

  9. Bergtold A, Desai DD, Gavhane A, Clynes R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity. 2005;23(5):503–14.

    Article  CAS  PubMed  Google Scholar 

  10. Klaus GG, Humphrey JH, Kunkl A, Dongworth DW. The follicular dendritic cell: its role in antigen presentation in the generation of immunological memory. Immunol Rev. 1980;53:3–28.

    Article  CAS  PubMed  Google Scholar 

  11. Corbett SJ, Tomlinson IM, Sonnhammer EL, Buck D, Winter G. Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J Mol Biol. 1997;270(4):587–97.

    Article  CAS  PubMed  Google Scholar 

  12. Schroeder HW. Similarity and divergence in the development and expression of the mouse and human antibody repertoires. Dev Comp Immunol. 2006;30(1–2):119–35.

    Article  CAS  PubMed  Google Scholar 

  13. Boyd SD, Gaëta BA, Jackson KJ, Fire AZ, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, Simen BB, Hanczaruk B, Nguyen KD, Nadeau KC, Egholm M, Miklos DB, Zehnder JL, Collins AM. Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol. 2010;184(12):6986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, Friedrich W, Seger RA, Hansen-Hagge TE, Desiderio S, Lieber MR, Bartram CR. RAG mutations in human B cell-negative SCID. Science. 1996;274(5284):97–9.

    Article  CAS  PubMed  Google Scholar 

  15. Overturf GD. Indications for the immunological evaluation of patients with meningitis. Clin Infect Dis. 2003;36(2):189–94.

    Article  PubMed  Google Scholar 

  16. Liu Z, Giudice GJ, Swartz SJ, Fairley JA, Till GO, Troy JL, Diaz LA. The role of complement in experimental bullous pemphigoid. J Clin Invest. 1995;95(4):1539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nelson KC, Zhao M, Schroeder PR, Li N, Wetsel RA, Diaz LA, Liu Z. Role of different pathways of the complement cascade in experimental bullous pemphigoid. J Clin Invest. 2006;116(11):2892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.

    Article  CAS  PubMed  Google Scholar 

  19. Clynes R. Protective mechanisms of IVIG. Curr Opin Immunol. 2007;19(6):646–51.

    Article  CAS  PubMed  Google Scholar 

  20. Nimmerjahn F, Ravetch J. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2007;8(1):34–47.

    Article  CAS  Google Scholar 

  21. Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E, Walker EU, Manz RA, Tarlinton DM, Smith KGC. FcgammaRIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol. 2007;8(4):419–29.

    Article  CAS  PubMed  Google Scholar 

  22. Ivan E, Colovai AI. Human Fc receptors: critical targets in the treatment of autoimmune diseases and transplant rejections. Hum Immunol. 2006;67(7):479–91.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao M, Trimbeger ME, Li N, Diaz LA, Shapiro SD, Liu Z. Role of FcRs in animal model of autoimmune bullous pemphigoid. J Immunol. 2006;177(5):3398–405.

    Article  CAS  PubMed  Google Scholar 

  24. Siegrist C-A, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9(3):185–94.

    Article  CAS  PubMed  Google Scholar 

  25. Carsetti R, Köhler G, Lamers MC. Transitional B cells are the target of negative selection in the B cell compartment. J Exp Med. 1995;181(6):2129–40.

    Article  CAS  PubMed  Google Scholar 

  26. Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA, Hardy RR. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol. 2001;167(12):6834–40.

    Article  CAS  PubMed  Google Scholar 

  27. Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2002;2(12):945–56.

    Article  CAS  PubMed  Google Scholar 

  28. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, Frew E, Scott ML. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293(5537):2111–4.

    Article  CAS  PubMed  Google Scholar 

  29. Julien S, Soulas P, Garaud JC, Martin T, Pasquali JL. B cell positive selection by soluble self-antigen. J Immunol. 2002;169(8):4198–204.

    Article  CAS  PubMed  Google Scholar 

  30. Chung JB, Silverman M, Monroe JG. Transitional B cells: step by step towards immune competence. Trends Immunol. 2003;24(6):343–9.

    Article  CAS  PubMed  Google Scholar 

  31. Förster I, Rajewsky K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc Natl Acad Sci U S A. 1990;87(12):4781–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Macallan DC, Wallace DL, Zhang Y, Ghattas H, Asquith B, de Lara C, Worth A, Panayiotakopoulos G, Griffin GE, Tough DF, Beverley PCL. B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood. 2005;105(9):3633–40.

    Article  CAS  PubMed  Google Scholar 

  33. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7.

    Article  CAS  PubMed  Google Scholar 

  34. Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med. 1993;177(4):999–1008.

    Article  CAS  PubMed  Google Scholar 

  35. O’Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, Dal Porto JM, Li Q-Z, Cambier JC. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity. 2011;35(5):746–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Khalil AM, Cambier JC, Shlomchik MJ. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science. 2012;336(6085):1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lesley R, Xu Y, Kalled SL, Hess DM, Schwab SR, Shu H-B, Cyster JG. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity. 2004;20(4):441–53.

    Article  CAS  PubMed  Google Scholar 

  38. Thien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F, Brink R. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. 2004;20(6):785–98.

    Article  CAS  PubMed  Google Scholar 

  39. Aït-Azzouzene D, Gavin AL, Skog P, Duong B, Nemazee D. Effect of cell:cell competition and BAFF expression on peripheral B cell tolerance and B-1 cell survival in transgenic mice expressing a low level of Igkappa-reactive macroself antigen. Eur J Immunol. 2006;36(4):985–96.

    Article  PubMed  CAS  Google Scholar 

  40. Nikbakht N, Migone TS, Ward CP. Cellular competition independent of BAFF/B lymphocyte stimulator results in low frequency of an autoreactive clonotype in mature polyclonal B cell compartments. J Immunol. 2011;187(1):37–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol. 2007;7(8):633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun. 2005;8:140–74.

    Article  CAS  PubMed  Google Scholar 

  43. Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sailler L. Rituximab off label use for difficult-to-treat auto-immune diseases: reappraisal of benefits and risks. Clin Rev Allergy Immunol. 2008;34(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  45. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002;2(7):465–75.

    Article  CAS  PubMed  Google Scholar 

  46. Mackay F, Schneider P, Rennert P, Browning J. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.

    Article  CAS  PubMed  Google Scholar 

  47. Benson MJ, Elgueta R, Noelle RJ. B cell survival: an unexpected mechanism of lymphocyte vitality. Immunol Cell Biol. 2008;86(6):485–6.

    Article  CAS  PubMed  Google Scholar 

  48. Scholz JL, Crowley JE, Tomayko MM, Steinel N, O’Neill PJ, Quinn WJ, Goenka R, Miller JP, Cho YH, Long V, Ward C, Migone T-S, Shlomchik MJ, Cancro MP. BLyS inhibition eliminates primary B cells but leaves natural and acquired humoral immunity intact. Proc Natl Acad Sci U S A. 2008;105(40):15517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roschke V, Sosnovtseva S, Ward CD, Hong JS, Smith R, Albert V, Stohl W, Baker KP, Ullrich S, Nardelli B, Hilbert DM, Migone T-S. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J Immunol. 2002;169(8):4314–21.

    Article  CAS  PubMed  Google Scholar 

  50. Dillon SR, Harder B, Lewis KB, Moore MD, Liu H, Bukowski TR, Hamacher NB, Lantry MM, Maurer M, Krejsa CM, Ellsworth JL, Pederson S, Elkon KB, Wener MH, Dall’Era M, Gross JA. B-lymphocyte stimulator/a proliferation-inducing ligand heterotrimers are elevated in the sera of patients with autoimmune disease and are neutralized by atacicept and B-cell maturation antigen-immunoglobulin. Arthritis Res Ther. 2010;12(2):R48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Navarra SV, Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, Li EK-M, Thomas M, Kim H-Y, León MG, Tanasescu C, Nasonov E, Lan J-L, Pineda L, Zhong ZJ, Freimuth W, Petri MA. BLISS-52 Study Group. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9767):721–31.

    Article  CAS  PubMed  Google Scholar 

  52. Stohl W. Future prospects in biologic therapy for systemic lupus erythematosus. Nat Rev Rheumatol. 2013;9(12):705–20.

    Article  CAS  PubMed  Google Scholar 

  53. Packard TA, Cambier JC. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000Prime Rep. 2013;5:40.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat Rev Immunol. 2012;12(4):282–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taillardet M, Haffar G, Mondière P, Asensio M-J, Gheit H, Burdin N, Defrance T, Genestier L. The thymus-independent immunity conferred by a pneumococcal polysaccharide is mediated by long-lived plasma cells. Blood. 2009;114(20):4432–40.

    Article  CAS  PubMed  Google Scholar 

  56. Bortnick A, Chernova I, Quinn WJ. Long-lived bone marrow plasma cells are induced early in response to T cell-independent or T cell-dependent antigens. J Immunol. 2012;188(11):5389–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Foote JB, Mahmoud TI, Vale AM, Kearney JF. Long-term maintenance of polysaccharide-specific antibodies by IgM-secreting cells. J Immunol. 2012;188(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  58. Obukhanych TV, Nussenzweig MC. T-independent type II immune responses generate memory B cells. J Exp Med. 2006;203(2):305–10.

    Article  PubMed  PubMed Central  Google Scholar 

  59. William J, Euler C, Leadbetter E, Marshak-Rothstein A, Shlomchik MJ. Visualizing the onset and evolution of an autoantibody response in systemic autoimmunity. J Immunol. 2005;174(11):6872–8.

    Article  CAS  PubMed  Google Scholar 

  60. William J, Euler C, Shlomchik MJ. Short-lived plasmablasts dominate the early spontaneous rheumatoid factor response: differentiation pathways, hypermutating cell types, and affinity maturation outside the germinal center. J Immunol. 2005;174(11):6879–87.

    Article  CAS  PubMed  Google Scholar 

  61. Taylor JJ, Pape KA, Jenkins MK. A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J Exp Med. 2012;209(3):597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takemori T, Kaji T, Takahashi Y, Shimoda M, Rajewsky K. Generation of memory B cells inside and outside germinal centers. Eur J Immunol. 2014;44(5):1258–64.

    Article  CAS  PubMed  Google Scholar 

  63. Anderson SM, Khalil A, Uduman M, Hershberg U, Louzoun Y, Haberman AM, Kleinstein SH, Shlomchik MJ. Taking advantage: high-affinity B cells in the germinal center have lower death rates, but similar rates of division, compared to low-affinity cells. J Immunol. 2009;183(11):7314–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Onodera T, Takahashi Y, Yokoi Y, Ato M, Kodama Y, Hachimura S, Kurosaki T, Kobayashi K. Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. Proc Natl Acad Sci U S A. 2012;109(7):2485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vinuesa CG, Linterman MA, Goodnow CC, Randall KL. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol Rev. 2010;237(1):72–89.

    Article  CAS  PubMed  Google Scholar 

  66. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63.

    Article  CAS  PubMed  Google Scholar 

  67. Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly — TFH cells in human health and disease. Nat Rev Immunol Nat Publ Group. 2013;13(6):412–26.

    Article  CAS  Google Scholar 

  68. Gitlin AD, Shulman Z, Nussenzweig MC. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature. 2014;509(7502):637–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ, Elsemore J, Noelle RJ, Flavell RA. Mice deficient for the CD40 ligand. Immunity. 1994;1(5):423–31.

    Article  CAS  PubMed  Google Scholar 

  70. Bossaller L, Burger J, Draeger R, Grimbacher B, Knoth R, Plebani A, Durandy A, Baumann U, Schlesier M, Welcher AA, Peter HH, Warnatz K. ICOS deficiency is associated with a severe reduction of CXCR5 + CD4 germinal center Th cells. J Immunol. 2006;177(7):4927–32.

    Article  CAS  PubMed  Google Scholar 

  71. Pratama A, Vinuesa CG. Control of TFH cell numbers: why and how? Immunol Cell Biol. 2014;92(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  72. Paterson AM, Vanguri VK, Sharpe AH. SnapShot: B7/CD28 costimulation. Cell. 2009;137(5):974–4.e1.

    Article  CAS  PubMed  Google Scholar 

  73. Good-Jacobson KL, Song E, Anderson S, Sharpe AH, Shlomchik MJ. CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. J Immunol. 2012;188(9):4217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol. 2010;11(6):535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zotos D, Coquet JM, Zhang Y, Light A, D’Costa K, Kallies A, Corcoran LM, Godfrey DI, Toellner K-M, Smyth MJ, Nutt SL, Tarlinton DM. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med. 2010;207(2):365–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iikuni N, Lourenço EV, Hahn BH, La Cava A. Cutting edge: regulatory T cells directly suppress B cells in systemic lupus erythematosus. J Immunol. 2009;183(3):1518–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wojciechowski W, Harris DP, Sprague F, Mousseau B, Makris M, Kusser K, Honjo T, Mohrs K, Mohrs M, Randall T, Lund FE. Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus. Immunity. 2009;30(3):421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol. 2010;10(4):236–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang M, Rui K, Wang S, Lu L. Regulatory B cells in autoimmune diseases. Cell Mol Immunol. 2013;10(2):122–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Blair PA, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity. 2010;32(1):129–40.

    Article  CAS  PubMed  Google Scholar 

  81. Rolle L, Memarzadeh Tehran M, Morell-García A, Raeva Y, Schumacher A, Hartig R, Costa S-D, Jensen F, Zenclussen AC. Cutting edge: IL-10-producing regulatory B cells in early human pregnancy. Am J Reprod Immunol. 2013;70(6):448–53.

    Article  CAS  PubMed  Google Scholar 

  82. Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5(3):230–42.

    Article  CAS  PubMed  Google Scholar 

  83. Roth K, Oehme L, Zehentmeier S, Zhang Y, Niesner R, Hauser AE. Tracking plasma cell differentiation and survival. Cytometry A. 2014;85(1):15–24.

    Article  PubMed  CAS  Google Scholar 

  84. Weisel FJ, Zuccarino-Catania GV, Chikina M, Shlomchik MJ. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunol Rev. 2016;247(1):52–63.

    Google Scholar 

  85. Pabst O, Peters T, Czeloth N, Bernhardt G, Scharffetter-Kochanek K, Förster R. Cutting edge: egress of newly generated plasma cells from peripheral lymph nodes depends on beta 2 integrin. J Immunol. 2005;174(12):7492–5.

    Article  CAS  PubMed  Google Scholar 

  86. Slifka MK, Antia R, Whitmire JK, Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity. 1998;8(3):363–72.

    Article  CAS  PubMed  Google Scholar 

  87. Rodriguez Gomez M, Talke Y, Goebel N, Hermann F, Reich B, Mack M. Basophils support the survival of plasma cells in mice. J Immunol. 2010;185(12):7180–5.

    Article  PubMed  Google Scholar 

  88. Chu VT, Berek C. Immunization induces activation of bone marrow eosinophils required for plasma cell survival. Eur J Immunol. 2012;42(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  89. Moens L, Tangye SG. Cytokine-mediated regulation of plasma cell generation: IL-21 takes center stage. Front Immunol. 2014;5:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kotlarz D, Ziętara N, Uzel G, Weidemann T, Braun CJ, Diestelhorst J, Krawitz PM, Robinson PN, Hecht J, Puchałka J, Gertz EM, Schäffer AA, Lawrence MG, Kardava L, Pfeifer D, Baumann U, Pfister E-D, Hanson EP, Schambach A, Jacobs R, Kreipe H, Moir S, Milner JD, Schwille P, Mundlos S, Klein C. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med. 2013;210(3):433–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hibi T, Dosch HM. Limiting dilution analysis of the B cell compartment in human bone marrow. Eur J Immunol. 1986;16(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  92. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, Yu X, Yang LM, Tan BK, Rosenwald A, Hurt EM, Petroulakis E, Sonenberg N, Yewdell JW, Calame K, Glimcher LH, Staudt LM. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21(1):81–93.

    Article  CAS  PubMed  Google Scholar 

  93. Cenci S. The proteasome in terminal plasma cell differentiation. Semin Hematol. 2012;49(3):215–22.

    Article  CAS  PubMed  Google Scholar 

  94. Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F, Raimondi A, Fagioli C, Merlini A, Mariani E, Pasqualetto E, Orfanelli U, Ponzoni M, Sitia R, Casola S, Cenci S. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol. 2013;14(3):298–305.

    Article  CAS  PubMed  Google Scholar 

  95. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol. 2003;171(10):4969–73.

    Article  CAS  PubMed  Google Scholar 

  96. Tangye SG, Good KL. Human IgM + CD27+ B cells: memory B cells or “memory” B cells? J Immunol. 2007;179(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  97. Tomayko MM, Anderson SM, Brayton CE, Sadanand S, Steinel NC, Behrens TW, Shlomchik MJ. Systematic comparison of gene expression between murine memory and naive B cells demonstrates that memory B cells have unique signaling capabilities. J Immunol. 2008;181(1):27–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tomayko MM, Steinel NC, Anderson SM, Shlomchik MJ. Cutting edge: hierarchy of maturity of murine memory B cell subsets. J Immunol. 2010;185(12):7146–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Klein U, Tu Y, Stolovitzky GA, Keller JL, Haddad J, Miljkovic V, Cattoretti G, Califano A, Dalla-Favera R. Transcriptional analysis of the B cell germinal center reaction. Proc Natl Acad Sci U S A. 2003;100(5):2639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Good KL, Avery DT, Tangye SG. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J Immunol. 2009;182(2):890–901.

    Article  CAS  PubMed  Google Scholar 

  101. Schena F, Volpi S, Faliti CE, Penco F, Santi S, Proietti M, Schenk U, Damonte G, Salis A, Bellotti M, Fais F, Tenca C, Gattorno M, Eibel H, Rizzi M, Warnatz K, Idzko M, Ayata CK, Rakhmanov M, Galli T, Martini A, Canossa M, Grassi F, Traggiai E. Dependence of immunoglobulin class switch recombination in B cells on vesicular release of ATP and CD73 ectonucleotidase activity. Cell Rep. 2013;3(6):1824–31.

    Article  CAS  PubMed  Google Scholar 

  102. Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H, Kleinstein SH, Good-Jacobson KL, Shlomchik MJ. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat Immunol. 2014;15(7):631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dogan I, Bertocci B, Vilmont V, Delbos F, Mégret J, Storck S, Reynaud C-A, Weill J-C. Multiple layers of B cell memory with different effector functions. Nat Immunol. 2009;10(12):1292–9.

    Article  CAS  PubMed  Google Scholar 

  104. Klein U, Rajewsky K, Küppers R. Human immunoglobulin (Ig)M + IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 1998;188(9):1679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Agematsu K, Hokibara S, Nagumo H, Komiyama A. CD27: a memory B-cell marker. Immunol Today. 2000;21(5):204–6.

    Article  CAS  PubMed  Google Scholar 

  106. Sanz I, Wei C, Lee FE-H, Anolik J. Phenotypic and functional heterogeneity of human memory B cells. Semin Immunol. 2008;20(1):67–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Berkowska MA, Driessen GJA, Bikos V, Grosserichter-Wagener C, Stamatopoulos K, Cerutti A, He B, Biermann K, Lange JF, van der Burg M, van Dongen JJM, van Zelm MC. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood Am Soc Hematol. 2011;118(8):2150–8.

    CAS  Google Scholar 

  108. Moir S, Fauci AS. Insights into B cells and HIV-specific B-cell responses in HIV-infected individuals. Immunol Rev. 2013;254(1):207–24.

    Article  PubMed  CAS  Google Scholar 

  109. Ehrhardt GRA, Hsu JT, Gartland L, Leu C-M, Zhang S, Davis RS, Cooper MD. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J Exp Med. 2005;202(6):783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ehrhardt GR, Hijikata A, Kitamura H, Ohara O, Wang J-Y, Cooper MD. Discriminating gene expression profiles of memory B cell subpopulations. J Exp Med. 2008;205(8):1807–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 1998;188(9):1691–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, Lee E-H, Milner ECB, Sanz I. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol. 2007;178(10):6624–33.

    Article  CAS  PubMed  Google Scholar 

  113. Deenick EK, Avery DT, Chan A, Berglund LJ, Ives ML, Moens L, Stoddard JL, Bustamante J, Boisson-Dupuis S, Tsumura M, Kobayashi M, Arkwright PD, Averbuch D, Engelhard D, Roesler J, Peake J, Wong M, Adelstein S, Choo S, Smart JM, French MA, Fulcher DA, Cook MC, Picard C, Durandy A, Klein C, Holland SM, Uzel G, Casanova J-L, Ma CS, Tangye SG. Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. J Exp Med. 2013;210(12):2739–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Benson MJ, Dillon SR, Castigli E, Geha RS, Xu S, Lam K-P, Noelle RJ. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol. 2008;180(6):3655–9.

    Article  CAS  PubMed  Google Scholar 

  115. Rinaldi S, Zangari P, Cotugno N, Manno EC, Brolatti N, Castrucci MR, Donatelli I, Rossi P, Palma P, Cagigi A. Antibody but not memory B-cell responses are tuned-down in vertically HIV-1 infected children and young individuals being vaccinated yearly against influenza. Vaccine. 2014;32(6):657–63.

    Article  CAS  PubMed  Google Scholar 

  116. Kakoulidou M, Ingelman-Sundberg H, Johansson E, Cagigi A, Farouk SE, Nilsson A, Johansen K. Kinetics of antibody and memory B cell responses after MMR immunization in children and young adults. Vaccine. 2013;31(4):711–7.

    Article  CAS  PubMed  Google Scholar 

  117. Anderson SM, Tomayko MM, Shlomchik MJ. Intrinsic properties of human and murine memory B cells. Immunol Rev. 2006;211:280–94.

    Article  CAS  PubMed  Google Scholar 

  118. Anderson SM, Hannum LG, Shlomchik MJ. Memory B cell survival and function in the absence of secreted antibody and immune complexes on follicular dendritic cells. J Immunol. 2006;176(8):4515–9.

    Article  CAS  PubMed  Google Scholar 

  119. Luckey CJ, Bhattacharya D, Goldrath AW, Weissman IL, Benoist C, Mathis D. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci U S A. 2006;103(9):3304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Haining WN, Ebert BL, Subrmanian A, Wherry EJ, Eichbaum Q, Evans JW, Mak R, Rivoli S, Pretz J, Angelosanto J, Smutko JS, Walker BD, Kaech SM, Ahmed R, Nadler LM, Golub TR. Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells. J Immunol. 2008;181(3):1859–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Abbas AK, Lichtman AH, Pillai S. Basic immunology: functions and disorders of the immune system. 4th ed. Philadelphia: Elsevier/Saunders; 2014.

    Google Scholar 

  122. Good-Jacobson KL, Shlomchik MJ. Plasticity and heterogeneity in the generation of memory B cells and long-lived plasma cells: the influence of germinal center interactions and dynamics. J Immunol. 2010;185:3117–25.

    Article  CAS  PubMed  Google Scholar 

  123. Murphy K. Janeway’s immunobiology. 8th ed. New York: Garland Science; 2014.

    Google Scholar 

  124. Nimmerjahn F, Ravetch J. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.

    Article  CAS  PubMed  Google Scholar 

  125. Packard TA, Cambier JC. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000Prime Rep. 2013;5:40.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5:230–42.

    Article  CAS  PubMed  Google Scholar 

  127. Siegrist CA. Vaccine immunology. In: Plotkin S, Orenstein W, Offit P, editors. Vaccines. Philadelphia: Saunders; 2008. p. 17–35.

    Google Scholar 

  128. Tobón GJ, et al. B lymphocytes: development, tolerance, and their role in autoimmunity-focus on systemic lupus erythematosus. Autoimmune Dis. 2013;2013:827254.

    PubMed  PubMed Central  Google Scholar 

  129. Xu Z, et al. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012;12:517–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. David Allman for critical reading of the manuscript, Sara Whitaker for expert assistance with figure design and the Navaratnam-Tomayko crew for infectious zest and zeal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary M. Tomayko MD, PhD .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    Which of the following is true of class-switch recombination?

    1. A.

      It affects the rearranged V(D)J

    2. B.

      It uses the RAG enzymes

    3. C.

      It is an irreversible process

    4. D.

      A single variable region cannot elicit a number of different effector functions

  2. 2.

    Which is the only secreted immunoglobulin isotype that can pentamerize?

    1. A.

      IgA

    2. B.

      IgD

    3. C.

      IgE

    4. D.

      IgG

    5. E.

      IgM

  3. 3.

    Which immunoglobulin isotype has the longest half life?

    1. A.

      IgA

    2. B.

      IgD

    3. C.

      IgE

    4. D.

      IgG

    5. E.

      IgM

  4. 4.

    All three complement pathways converge on which common intermediate protease?

    1. A.

      C3 convertase

    2. B.

      alpha/beta hydrolase

    3. C.

      alkaline phosphatase

    4. D.

      serine protease

    5. E.

      GTPase

  5. 5.

    Which of the following is not a characteristic of regulatory T cells (Tregs)?

    1. A.

      expression of Foxp3

    2. B.

      expression of CD25

    3. C.

      production of IL10

    4. D.

      expression of the IL-2 receptor

    5. E.

      expression of CD80

Answers

  1. 1.

    C

  2. 2.

    E

  3. 3.

    D

  4. 4.

    A

  5. 5.

    E

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sadanand, S., Tomayko, M.M. (2017). B Cell Biology. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics