Skip to main content

Vitiligo

  • Chapter
  • First Online:
Book cover Clinical and Basic Immunodermatology

Abstract

Vitiligo is an autoimmune disease of the skin that affects approximately 1 % of the population. It is mediated by self-reactive CD8+ T cells that target and kill melanocytes in the basal epidermis. Patients present with patchy depigmentation, which commonly appears on the face, hands, feet and genitals, but may affect any part of the body. Depigmentation is typically progressive and chronic, slowly developing over the life of the patient. There are currently no FDA-approved treatments for vitiligo, and while some therapies are effective for disease, they primarily work through general immunosuppression. Like most autoimmune diseases, both genetic and environmental factors contribute to the risk of developing vitiligo. These factors promote immune dysregulation, which then initiates depigmentation and disease progression. Genes that confer susceptibility to vitiligo have been identified in Genome-Wide Association Studies (GWAS), implicating both innate and adaptive immunity. Environmental triggers for vitiligo include a number of common household commercial products that contain chemical phenols, which act as tyrosine analogs and induce stress responses in the melanocyte. Several recent studies connecting cellular stress and innate immune activation have shed light on possible mechanisms by which vitiligo is triggered through exposure to these environmental insults. Studies of the “effector” phase of vitiligo reveal that disease is driven by IFN-γ and its target genes, including chemokines. Here we will outline the clinical presentation and treatment options, immunopathogenesis, basic and translational research strategies, and future prospects for the treatment of vitiligo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linthorst Homan MW, Spuls PI, de Korte J, Bos JD, Sprangers MA, van der Veen JPW. The burden of vitiligo: patient characteristics associated with quality of life. J Am Acad Dermatol. 2009;61(3):411–20. Epub 2009/07/07. eng.

    Google Scholar 

  2. Attili VR, Attili SK. Lichenoid inflammation in vitiligo – a clinical and histopathologic review of 210 cases. Int J Dermatol. 2008;47(7):663–9. Epub 2008/07/11. eng.

    Article  PubMed  Google Scholar 

  3. Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol. 1996;148(4):1219–28.

    PubMed  PubMed Central  Google Scholar 

  4. Fang W, Yang P. Vogt-koyanagi-harada syndrome. Curr Eye Res. 2008;33(7):517–23. Epub 2008/07/05. eng.

    Article  CAS  PubMed  Google Scholar 

  5. Moss C. Cytogenetic and molecular evidence for cutaneous mosaicism: the ectodermal origin of Blaschko lines. Am J Med Genet. 1999;85(4):330–3. Epub 1999/07/09. eng.

    Article  CAS  PubMed  Google Scholar 

  6. Molho-Pessach V, Schaffer JV. Blaschko lines and other patterns of cutaneous mosaicism. Clin Dermatol. 2011;29(2):205–25. Epub 2011/03/15. eng.

    Article  PubMed  Google Scholar 

  7. Findlay GH, Moores PP. Pigment anomalies of the skin in the human chimaera: their relation to systematized naevi. Br J Dermatol. 1980;103(5):489–98. Epub 1980/11/01. eng.

    Article  CAS  PubMed  Google Scholar 

  8. Lipsker D, Flory E, Wiesel ML, Hanau D, de la Salle H. Between light and dark, the chimera comes out. Arch Dermatol. 2008;144(3):327–30. Epub 2008/03/19. eng.

    Article  PubMed  Google Scholar 

  9. Pittet MJ, Mempel TR. Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev. 2008;221(Journal Article):107–29.

    Google Scholar 

  10. van Geel N, Speeckaert R, Melsens E, Toelle SP, Speeckaert M, De Schepper S, et al. The distribution pattern of Segmental Vitiligo: clues for somatic mosaicism. Br J Dermatol. 2012;22. Epub 2012/08/24. Eng.

    Google Scholar 

  11. van Geel N, Mollet I, Brochez L, Dutre M, De Schepper S, Verhaeghe E, et al. New insights in segmental vitiligo: case report and review of theories. Br J Dermatol. 2012;166(2):240–6. Epub 2011/09/23. eng.

    Article  PubMed  CAS  Google Scholar 

  12. Gilhar A, Pillar T, Eidelman S, Etzioni A. Vitiligo and idiopathic guttate hypomelanosis. Repigmentation of skin following engraftment onto nude mice. Arch Dermatol. 1989;125(10):1363–6. Epub 1989/10/01. eng.

    Article  CAS  PubMed  Google Scholar 

  13. Ezzedine K, Gauthier Y, Leaute-Labreze C, Marquez S, Bouchtnei S, Jouary T, et al. Segmental vitiligo associated with generalized vitiligo (mixed vitiligo): a retrospective case series of 19 patients. J Am Acad Dermatol. 2011;65(5):965–71. Epub 2011/05/28. eng.

    Article  PubMed  Google Scholar 

  14. Alikhan A, Felsten LM, Daly M, Petronic-Rosic V. Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol. 2011;65(3):473–91.

    Article  PubMed  Google Scholar 

  15. Birlea SA, Fain PR, Spritz RA. A Romanian population isolate with high frequency of vitiligo and associated autoimmune diseases. Arch Dermatol. 2008;144(3):310–6. Epub 2008/03/19. eng.

    Article  PubMed  Google Scholar 

  16. Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003;16(3):208–14. Epub 2003/05/20. eng.

    Article  PubMed  Google Scholar 

  17. Taieb A, Picardo M. Clinical practice. Vitiligo N Engl J Med. 2009;360(2):160–9. Epub 2009/01/09. eng.

    Article  CAS  PubMed  Google Scholar 

  18. Spritz RA. Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis. J Invest Dermatol. 2012;132(2):268–73. Pubmed Central PMCID: 3258303, Epub 2011/10/14. eng.

    Article  CAS  PubMed  Google Scholar 

  19. Losick R, Desplan C. Stochasticity and cell fate. Science. 2008;320(5872):65–8. Pubmed Central PMCID: 2605794, Epub 2008/04/05. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Felix NJ, Allen PM. Specificity of T-cell alloreactivity. Nat Rev Immunol. 2007;7(12):942–53. Epub 2007/11/17. eng.

    Article  CAS  PubMed  Google Scholar 

  21. Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol. 2008;8(12):948–57. Pubmed Central PMCID: 2785478, Epub 2008/11/15. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Millington GW, Levell NJ. Vitiligo: the historical curse of depigmentation. Int J Dermatol. 2007;46(9):990–5. Epub 2007/09/08. eng.

    Article  PubMed  Google Scholar 

  23. Ongenae K, Beelaert L, van Geel N, Naeyaert JM. Psychosocial effects of vitiligo. J Eur Acad Dermatol Venereol. 2006;20(1):1–8. Epub 2006/01/13. eng.

    Article  CAS  PubMed  Google Scholar 

  24. Felsten LM, Alikhan A, Petronic-Rosic V. Vitiligo: a comprehensive overview Part II: treatment options and approach to treatment. J Am Acad Dermatol. 2011;65(3):493–514.

    Article  PubMed  Google Scholar 

  25. Lotti T, Buggiani G, Troiano M, Assad GB, Delescluse J, De Giorgi V, et al. Targeted and combination treatments for vitiligo. Comparative evaluation of different current modalities in 458 subjects. Dermatol Ther. 2008;21 Suppl 1(Journal Article):S20–6. Epub 2008/09/09. eng.

    Google Scholar 

  26. Yones SS, Palmer RA, Garibaldinos TM, Hawk JL. Randomized double-blind trial of treatment of vitiligo: efficacy of psoralen-UV-A therapy vs Narrowband-UV-B therapy. Arch Dermatol. 2007;143(5):578–84. Epub 2007/05/24. eng.

    Article  CAS  PubMed  Google Scholar 

  27. Lee E, Koo J, Berger T. UVB phototherapy and skin cancer risk: a review of the literature. Int J Dermatol. 2005;44(5):355–60. Epub 2005/05/05. eng.

    Article  PubMed  Google Scholar 

  28. Ghosh S, Mukhopadhyay S. Chemical leucoderma: a clinico-aetiological study of 864 cases in the perspective of a developing country. Br J Dermatol. 2009;160(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  29. Oliver EASL, Warren LH. Occupational leukoderma. JAMA. 1939;113:927–8.

    Article  Google Scholar 

  30. Mosher DB, Parrish JA, Fitzpatrick TB. Monobenzylether of hydroquinone. A retrospective study of treatment of 18 vitiligo patients and a review of the literature. Br J Dermatol. 1977;97(6):669–79.

    Article  CAS  PubMed  Google Scholar 

  31. Schallreuter KU, Bahadoran P, Picardo M, Slominski A, Elassiuty YE, Kemp EH, et al. Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else? Exp Dermatol. 2008;17(2):139–40. discussion 41–60. Epub 2008/01/22. eng.

    Article  CAS  PubMed  Google Scholar 

  32. Jimbow K, Chen H, Park JS, Thomas PD. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol. 2001;144(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  33. Alajlan A, Alfadley A, Pedersen KT. Transfer of vitiligo after allogeneic bone marrow transplantation. J Am Acad Dermatol. 2002;46(4):606–10.

    Article  PubMed  Google Scholar 

  34. Neumeister P, Strunk D, Apfelbeck U, Sill H, Linkesch W. Adoptive transfer of vitiligo after allogeneic bone marrow transplantation for non-Hodgkin’s lymphoma. Lancet. 2000;355(9212):1334–5.

    Article  CAS  PubMed  Google Scholar 

  35. Au WY, Yeung CK, Chan HH, Lie AK. Generalized vitiligo after lymphocyte infusion for relapsed leukaemia. Br J Dermatol. 2001;145(6):1015–7.

    Article  CAS  PubMed  Google Scholar 

  36. Boissy RE, Liu YY, Medrano EE, Nordlund JJ. Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalization in long-term cultures of melanocytes from vitiligo patients. J Invest Dermatol. 1991;97(3):395–404.

    Article  CAS  PubMed  Google Scholar 

  37. Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, et al. In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Investig Dermatol Symp Proc Soc Investig Dermatol Inc Eur Soc Dermatol Res. 1999;4(1):91–6. Epub 1999/10/28. eng.

    Google Scholar 

  38. Schallreuter KU, Wood JM, Berger J. Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol. 1991;97(6):1081–5. Epub 1991/12/01. eng.

    Article  CAS  PubMed  Google Scholar 

  39. Gawkrodger DJ. Pseudocatalase and narrowband ultraviolet B for vitiligo: clearing the picture. Br J Dermatol. 2009;161(4):721–2. Epub 2009/09/29. eng.

    Article  CAS  PubMed  Google Scholar 

  40. van den Boorn JG, Picavet DI, van Swieten PF, van Veen HA, Konijnenberg D, van Veelen PA, et al. Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy. J Invest Dermatol. 2011;131(6):1240–51.

    Article  PubMed  CAS  Google Scholar 

  41. Toosi S, Orlow SJ, Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol. 2012;132(11):2601–9. Pubmed Central PMCID: 3443495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kroll TM, Bommiasamy H, Boissy RE, Hernandez C, Nickoloff BJ, Mestril R, et al. 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol. 2005;124(4):798–806. Pubmed Central PMCID: 1747533, Epub 2005/04/09. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mosenson JA, Zloza A, Nieland JD, Garrett-Mayer E, Eby JM, Huelsmann EJ, et al. Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med. 2013;5(174):174ra28. Epub 2013/03/01. eng.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yu R, Broady R, Huang Y, Wang Y, Yu J, Gao M, et al. Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PLoS One. 2012;7(12):e51040. Pubmed Central PMCID: 3519491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol. 2013;25(6):676–82. Pubmed Central PMCID: 3935321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ, et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol. 2009;129(9):2220–32.

    Article  PubMed  CAS  Google Scholar 

  47. Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med. 1998;188(6):1203–8. Pubmed Central PMCID: 2212532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spritz RA. The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma. Genome Med. 2010;2(10):78. Pubmed Central PMCID: 2988443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang S, Zhou M, Lin F, Liu D, Hong W, Lu L, et al. Interferon-gamma induces senescence in normal human melanocytes. PLoS One. 2014;9(3):e93232. Pubmed Central PMCID: 3969336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wankowicz-Kalinska A, Le Poole C, van den Wijngaard R, Storkus WJ, Das PK. Melanocyte-specific immune response in melanoma and vitiligo: two faces of the same coin? Pigment Cell Res Sponsored by the Eur Soc Pigment Cell Res Int Pigment Cell Soc. 2003;16(3):254–60

    Google Scholar 

  51. Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med. 2000;192(11):1637–44. Pubmed Central PMCID: 2193107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wankowicz-Kalinska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, et al. Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest. 2003;83(5):683–95. Epub 2003/05/15. eng.

    Article  CAS  PubMed  Google Scholar 

  53. Badri AM, Todd PM, Garioch JJ, Gudgeon JE, Stewart DG, Goudie RB. An immunohistological study of cutaneous lymphocytes in vitiligo. J Pathol. 1993;170(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  54. Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, et al. CXCL10 Is Critical for the Progression and Maintenance of Depigmentation in a Mouse Model of Vitiligo. Sci Transl Med. 2014;6(223):223ra23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Oiso N, Sato M, Kawada A. Vitiligo after combination therapy of pegylated interferon-alpha-2a, ribavirin and vitamin D in a patient with chronic hepatitis C. J Dermatol. 2013;40(9):772–3.

    Article  CAS  PubMed  Google Scholar 

  56. Anbar TS, Abdel-Rahman AT, Ahmad HM. Vitiligo occurring at site of interferon-alpha 2b injection in a patient with chronic viral hepatitis C: a case report. Clin Exp Dermatol. 2008;33(4):503.

    Article  CAS  PubMed  Google Scholar 

  57. Bernstein D, Reddy KR, Jeffers L, Schiff E. Canities and vitiligo complicating interferon therapy for hepatitis C. Am J Gastroenterol. 1995;90(7):1176–7.

    CAS  PubMed  Google Scholar 

  58. Hamadah I, Binamer Y, Sanai FM, Abdo AA, Alajlan A. Interferon-induced vitiligo in hepatitis C patients: a case series. Int J Dermatol. 2010;49(7):829–33.

    Article  CAS  PubMed  Google Scholar 

  59. Hu MF, Li YL, Zhuang L. A case report of concomitant vitiligo in a patient treated with interferon alfa-1b for chronic hepatitis B infection. Zhonghua gan zang bing za zhi Zhonghua ganzangbing zazhi Chinese J Hepatol. 2010;18(11):872.

    Google Scholar 

  60. Nouri K, Busso M, Machler BC. Vitiligo associated with alpha-interferon in a patient with chronic active hepatitis C. Cutis. 1997;60(6):289–90.

    CAS  PubMed  Google Scholar 

  61. Primo J, Merino C, Gomez Belda AB. Vitiligo and alopecia in patients with chronic hepatitis C treated with alpha interferon associated or not with ribavirin. Gastroenterol Hepatol. 2000;23(7):362–3. Vitiligo y alopecia areata en pacientes con hepatitis cronica c tratados con interferon alfa asociado o no a ribavirina.

    CAS  PubMed  Google Scholar 

  62. Simsek H, Savas C, Akkiz H, Telatar H. Interferon-induced vitiligo in a patient with chronic viral hepatitis C infection. Dermatology. 1996;193(1):65–6.

    Article  CAS  PubMed  Google Scholar 

  63. Tomasiewicz K, Modrzewska R, Semczuk G. Vitiligo associated with pegylated interferon and ribavirin treatment of patients with chronic hepatitis C: a case report. Adv Ther. 2006;23(1):139–42.

    Article  PubMed  Google Scholar 

  64. Tinio P, Hadi S, Al-Ghaithi K, Al-Qari H, Rudikoff D. Segmental vitiligo and hair curling after interferon alpha and ribavirin treatment for hepatitis C. Skinmed. 2006;5(1):50–1.

    Article  PubMed  Google Scholar 

  65. Kemp EH, Gavalas NG, Gawkrodger DJ, Weetman AP. Autoantibody responses to melanocytes in the depigmenting skin disease vitiligo. Autoimmun Rev. 2007;6(3):138–42.

    Article  CAS  PubMed  Google Scholar 

  66. Spritz RA. Modern vitiligo genetics sheds new light on an ancient disease. J Dermatol. 2013;40(5):310–8. Epub 2013/05/15. eng.

    Article  CAS  PubMed  Google Scholar 

  67. Moraes-Vasconcelos D, Costa-Carvalho BT, Torgerson TR, Ochs HD. Primary immune deficiency disorders presenting as autoimmune diseases: IPEX and APECED. J Clin Immunol. 2008;28 Suppl 1(Journal Article):S11–9.

    Google Scholar 

  68. Klarquist J, Denman CJ, Hernandez C, Wainwright DA, Strickland FM, Overbeck A, et al. Reduced skin homing by functional Treg in vitiligo. Pigment Cell Melanoma Res. 2010;23(2):276–86. Epub 2010/02/24. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tu CX, Jin WW, Lin M, Wang ZH, Man MQ. Levels of TGF-beta(1) in serum and culture supernatants of CD4(+)CD25 (+) T cells from patients with non-segmental vitiligo. Arch Dermatol Res. 2011;303(9):685–9. Epub 2011/06/07. eng.

    Article  CAS  PubMed  Google Scholar 

  70. Lili Y, Yi W, Ji Y, Yue S, Weimin S, Ming L. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One. 2012;7(5):e37513. Pubmed Central PMCID: 3359382, Epub 2012/06/01. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou L, Li K, Shi YL, Hamzavi I, Gao TW, Henderson M, et al. Systemic analyses of immunophenotypes of peripheral T cells in non-segmental vitiligo: implication of defective natural killer T cells. Pigment Cell Melanoma Res. 2012;25(5):602–11. Epub 2012/05/18. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dwivedi M, Laddha NC, Arora P, Marfatia YS, Begum R. Decreased regulatory T-cells and CD4(+)/CD8(+) ratio correlate with disease onset and progression in patients with generalized vitiligo. Pigment Cell Melanoma Res. 2013;26(4):586–91. Epub 2013/04/12. eng.

    Article  CAS  PubMed  Google Scholar 

  73. Paus R, Ito N, Takigawa M, Ito T. The hair follicle and immune privilege. J Investig Dermatol Symp Proc Soc Investig Der Inc Eur Soc Dermatol Res. 2003;8(2):188–94.

    Google Scholar 

  74. Wang X, Marr AK, Breitkopf T, Leung G, Hao J, Wang E, et al. Hair follicle mesenchyme-associated PD-L1 regulates T-cell activation induced apoptosis: a potential mechanism of immune privilege. J Invest Dermatol. 2014;134(3):736–45.

    Article  CAS  PubMed  Google Scholar 

  75. Sanchez Rodriguez R, Pauli ML, Neuhaus IM, Yu SS, Arron ST, Harris HW, et al. Memory regulatory T cells reside in human skin. J Clin Invest. 2014;124(3):1027–36. Pubmed Central PMCID: 3934172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Nishimura EK. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 2011;24(3):401–10. Epub 2011/04/07. eng.

    Article  CAS  PubMed  Google Scholar 

  77. Retornaz G, Betuel H, Ortonne JP, Thivolet J. HL-A antigens and vitiligo. Br J Dermatol. 1976;95(2):173–5. Epub 1976/08/01. eng.

    Article  CAS  PubMed  Google Scholar 

  78. Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356(12):1216–25.

    Article  CAS  PubMed  Google Scholar 

  79. Levandowski CB, Mailloux CM, Ferrara TM, Gowan K, Ben S, Jin Y, et al. NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1beta processing via the NLRP1 inflammasome. Proc Natl Acad Sci U S A. 2013;110(8):2952–6. Pubmed Central PMCID: 3581876, Epub 2013/02/06. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, et al. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med. 2010;362(18):1686–97. Pubmed Central PMCID: 2891985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jin Y, Ferrara T, Gowan K, Holcomb C, Rastrou M, Erlich HA, et al. Next-generation DNA re-sequencing identifies common variants of TYR and HLA-A that modulate the risk of generalized vitiligo via antigen presentation. J Invest Dermatol. 2012;132(6):1730–3. Pubmed Central PMCID: 3513338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Birlea SA, Jin Y, Bennett DC, Herbstman DM, Wallace MR, McCormack WT, et al. Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Invest Dermatol. 2011;131(2):371–81. Pubmed Central PMCID: 3172683.

    Article  CAS  PubMed  Google Scholar 

  83. Liou HC, Boothby MR, Finn PW, Davidon R, Nabavi N, Zeleznik-Le NJ, et al. A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science. 1990;247(4950):1581–4. Epub 1990/03/30. eng.

    Article  CAS  PubMed  Google Scholar 

  84. Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(11):2490–6. Epub 2006/08/26. eng.

    Article  CAS  PubMed  Google Scholar 

  85. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102. Epub 2012/01/19. eng.

    CAS  PubMed  Google Scholar 

  86. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134(5):743–56. Pubmed Central PMCID: 2586148, Epub 2008/09/09. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ren Y, Yang S, Xu S, Gao M, Huang W, Gao T, et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet. 2009;5(6):e1000523. Pubmed Central PMCID: 2689933, Epub 2009/06/23. eng.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lerner AB, Shiohara T, Boissy RE, Jacobson KA, Lamoreux ML, Moellmann GE. A mouse model for vitiligo. J Invest Dermatol. 1986;87(3):299–304. Epub 1986/09/01. eng.

    Article  CAS  PubMed  Google Scholar 

  89. Lamoreux ML, Boissy RE, Womack JE, Nordlund JJ. The vit gene maps to the mi (microphthalmia) locus of the laboratory mouse. J Hered. 1992;83(6):435–9. Epub 1992/11/01. eng.

    Article  CAS  PubMed  Google Scholar 

  90. Denman CJ, McCracken J, Hariharan V, Klarquist J, Oyarbide-Valencia K, Guevara-Patino JA, et al. HSP70i accelerates depigmentation in a mouse model of autoimmune vitiligo. J Invest Dermatol. 2008;128(8):2041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloukian CE, Chan CC, et al. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci U S A. 1999;96(6):2982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lambe T, Leung JC, Bouriez-Jones T, Silver K, Makinen K, Crockford TL, et al. CD4 T cell-dependent autoimmunity against a melanocyte neoantigen induces spontaneous vitiligo and depends upon Fas-Fas ligand interactions. J Immunol (Baltimore, MD: 1950). 2006;177(5):3055–62.

    Google Scholar 

  93. Gregg RK, Nichols L, Chen Y, Lu B, Engelhard VH. Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. J Immunol. 2010;184(4):1909–17. Pubmed Central PMCID: 2887735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mehrotra S, Al-Khami AA, Klarquist J, Husain S, Naga O, Eby JM, et al. A coreceptor-independent transgenic human TCR mediates anti-tumor and anti-self immunity in mice. J Immunol. 2012;189(4):1627–38. Epub 2012/07/17. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin. J Invest Dermatol. 2012;132(7):1869–76. Pubmed Central PMCID: 3343174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wick G, Andersson L, Hala K, Gershwin ME, Selmi C, Erf GF, et al. Avian models with spontaneous autoimmune diseases. Adv Immunol. 2006;92(Journal Article):71–117.

    Google Scholar 

  97. Shi F, Erf GF. IFN-gamma, IL-21, and IL-10 co-expression in evolving autoimmune vitiligo lesions of Smyth line chickens. J Invest Dermatol. 2012;132(3 Pt 1):642–9. Pubmed Central PMCID: 3278581, Epub 2011/11/25. eng.

    Article  CAS  PubMed  Google Scholar 

  98. Shi F, Kong BW, Song JJ, Lee JY, Dienglewicz RL, Erf GF. Understanding mechanisms of vitiligo development in Smyth line of chickens by transcriptomic microarray analysis of evolving autoimmune lesions. BMC Immunol. 2012;13:18. Pubmed Central PMCID: 3353230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, Tigges B, Westerhof W, Das P. Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Invest. 2000;80(8):1299–309. Epub 2000/08/19. eng.

    Article  PubMed  Google Scholar 

  100. Ahn SK, Choi EH, Lee SH, Won JH, Hann SK, Park YK. Immunohistochemical studies from vitiligo – comparison between active and inactive lesions. Yonsei Med J. 1994;35(4):404–10.

    Article  CAS  PubMed  Google Scholar 

  101. Clark RA, Chong BF, Mirchandani N, Yamanaka K, Murphy GF, Dowgiert RK, et al. A novel method for the isolation of skin resident T cells from normal and diseased human skin. J Invest Dermatol. 2006;126(5):1059–70.

    Article  CAS  PubMed  Google Scholar 

  102. Bassiouny DA, Shaker O. Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol. 2011;36(3):292–7. Epub 2011/01/05. eng.

    Article  CAS  PubMed  Google Scholar 

  103. Khan R, Gupta S, Sharma A. Circulatory levels of T-cell cytokines (interleukin [IL]-2, IL-4, IL-17, and transforming growth factor-beta) in patients with vitiligo. J Am Acad Dermatol. 2012;66(3):510–1. Epub 2012/02/22. eng.

    Article  PubMed  Google Scholar 

  104. Birol A, Kisa U, Kurtipek GS, Kara F, Kocak M, Erkek E, et al. Increased tumor necrosis factor alpha (TNF-alpha) and interleukin 1 alpha (IL1-alpha) levels in the lesional skin of patients with nonsegmental vitiligo. Int J Dermatol. 2006;45(8):992–3. Epub 2006/08/17. eng.

    Article  PubMed  Google Scholar 

  105. Esmaeili B, Rezaee SA, Layegh P, Tavakkol Afshari J, Dye P, Ghayoor Karimiani E, et al. Expression of IL-17 and COX2 gene in peripheral blood leukocytes of vitiligo patients. Iran J Allergy Asthma Immunol. 2011;10(2):81–9. Epub 2011/06/01. eng.

    CAS  PubMed  Google Scholar 

  106. Singh S, Singh U, Pandey SS. Serum concentration of IL-6, IL-2, TNF-alpha, and IFNgamma in Vitiligo patients. Indian J Dermatol. 2012;57(1):12–4. Pubmed Central PMCID: 3312648, Epub 2012/04/04. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Grimes PE, Morris R, Avaniss-Aghajani E, Soriano T, Meraz M, Metzger A. Topical tacrolimus therapy for vitiligo: therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J Am Acad Dermatol. 2004;51(1):52–61. Epub 2004/07/10. eng.

    Article  PubMed  Google Scholar 

  108. Wang CQ, Cruz-Inigo AE, Fuentes-Duculan J, Moussai D, Gulati N, Sullivan-Whalen M, et al. Th17 cells and activated dendritic cells are increased in vitiligo lesions. PLoS One. 2011;6(4):e18907. Pubmed Central PMCID: 3081835, Epub 2011/05/05. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Seif El Nasr H, Shaker OG, Fawzi MM, El-Hanafi G. Basic fibroblast growth factor and tumour necrosis factor alpha in vitiligo and other hypopigmented disorders: suggestive possible therapeutic targets. J Eur Acad Dermatol Venereol. 2013;27(1):103–8. Epub 2011/12/14. eng.

    Article  CAS  PubMed  Google Scholar 

  110. Taieb A, Alomar A, Bohm M, Dell’anna ML, De Pase A, Eleftheriadou V, et al. Guidelines for the management of vitiligo: the European Dermatology Forum consensus. Br J Dermatol. 2013;168(1):5–19. Epub 2012/08/07. eng.

    Article  CAS  PubMed  Google Scholar 

  111. Mulekar SV, Isedeh P. Surgical interventions for vitiligo: an evidence-based review. Br J Dermatol. 2013;169 Suppl 3:57–66. Epub 2013/10/23. eng.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Harris MD, PhD .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    Briefly describe the clinical presentation of vitiligo. What is required for a definitive diagnosis?

    Vitiligo presents as patches of depigmentation, most commonly on the hands, feet, face, and genitals, followed by the trunk/back. Depigmentation may be bilateral or unilateral, and is thus classified as either non-segmental or segmental, respectively. Signs for highly active vitiligo include confetti or trichrome depigmentation, as well as the koebner phenomenon. A definitive diagnosis of vitiligo requires biopsy demonstrating a lack of melanocytes by immunohistochemical staining, although this is not commonly required.

  2. 2.

    What are current treatment options and how do they work? How would future treatment options improve upon these?

    Current treatment options for vitiligo include general immunosuppressants, including topical steroids and calcineurin inhibitors like tacrolimus, and narrow band UVB, which is thought to both suppress autoimmune inflammation and promote melanocyte differentiation/melanin production in the skin. Melanocyte transplantation surgery, or MKTP, often works for patients with stable disease such as segmental vitiligo patients. Future treatment options would improve upon these by more specifically targeting the immune cells responsible for vitiligo maintenance and progression, and through direct stimulation of melanocytes to better promote repigmentation.

  3. 3.

    Briefly describe the pathophysiology of vitiligo. Be sure to discuss cellular stress, innate immunity, adaptive immunity?

    Vitiligo is caused by a combination of genetic susceptibility and environmental exposures that lead to immune activation. Melanocyte stress is thought to be the first step in vitiligo pathogenesis. Genetic factors may cause increased basal melanocyte stress, and/or exposure to phenolic chemicals would cause increased melanocyte stress through interaction with tyrosinase. This stress is likely sensed by innate immune cells that reside in tissues, such as dendritic cells and macrophages, who in turn present melanocyte antigens to T cells in skin draining lymph nodes. These T cells then infiltrate the skin to target and kill melanocytes.

  4. 4.

    What are some genetic contributions to vitiligo? Please describe the functions of these genes in relation to disease pathogenesis.

    Some genetic contributions to vitiligo include HLA-A2, which is important for presentation of melanocyte antigens to T cells; innate immune genes such as NLRP1, which may play a role in sensing melanocyte stress; XBP-1, a chaperone that may contribute to melanocyte stress; genes affecting Treg function including PTPN22, IL2RA, FOXP3; and genes affecting effector T cell function such as granzyme B.

  5. 5.

    Name two research tools currently being used to better understand mechanisms of vitiligo. How does each tool help to identify new potential treatments?

    Two research tools currently used to better understand vitiligo are animal models and translational studies using human skin biopsies. Animal models help identify disease mechanisms and potential treatments, as T cell responses may be assessed in skin and lymphoid tissues following experimental treatments at specific time points, which cannot be assessed in humans. Skin biopsies, however, provide insight into human disease and may be assessed for inflammatory markers and cellular phenotypes.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Richmond, J.M., Harris, J.E. (2017). Vitiligo. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics