Skip to main content

Immunodermatology and Viral Skin Infection

  • Chapter
  • First Online:
Clinical and Basic Immunodermatology

Abstract

The skin is the largest organ in the human body, acts as our fist line of defense, and has a sophisticated array of cells and signaling molecules to help protect the body from infection. Yet even with this sophisticated defense, viruses cause a range of cutaneous diseases in humans, many of which are widespread in the population and cause significant morbidity and mortality, along with psychological and financial repercussions. Each virus has unique mechanisms by which it evades the immune system, replicates, and spreads. Some viruses infect the skin directly while others gain access systemically first. Infections can be acute or subclinical and then resolve, while others are persistent or can remain latent for years. This spectrum of presentations is mirrored by an equally wide array of evasion tactics that the viruses use to manipulate and escape both the adaptive and innate immune responses. In addition to highlighting viral responses, particular attention is also paid to the local immune response generated in the skin. Five viruses will be discussed in detail: herpes simplex virus, varicella zoster virus, human immunodeficiency virus, molluscum contagiosum virus, and human papilloma virus; along with the latest information on the development and advancement of both therapeutic and prophylactic vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simmons A. Anogenital mucosal immunology and virology. In: Tyring S, editor. Mucosal immunology and virology. Singapore: Springer; 2006. p. 7–21.

    Chapter  Google Scholar 

  2. Tigelaar RE, Lewis JM, Bergstresser PR. TCR gamma/delta+ dendritic epidermal T cells as constituents of skin-associated lymphoid tissue. J Invest Dermatol. 1990;94(6 Suppl):58S–63.

    Article  CAS  PubMed  Google Scholar 

  3. Villa LL. Prophylactic HPV, vaccines: reducing the burden of HPV-related diseases. Vaccine. 2006;24 Suppl 1:S23–8.

    Article  PubMed  CAS  Google Scholar 

  4. Medzhitov R, Janeway Jr CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300.

    Article  CAS  PubMed  Google Scholar 

  5. Schiller M, et al. Immune response modifiers—mode of action. Exp Dermatol. 2006;15(5):331–41.

    Article  CAS  PubMed  Google Scholar 

  6. Herbst-Kralovetz M, Pyles R. Toll-like receptors, innate immunity and HSV pathogenesis. Herpes. 2006;13(2):37–41.

    CAS  PubMed  Google Scholar 

  7. Rouse BT, Gierynska M. Immunity to herpes simplex virus: a hypothesis. Herpes. 2001;8 Suppl 1:2A–5.

    PubMed  Google Scholar 

  8. Serghides L, Vidric M, Watts TH. Approaches to studying costimulation of human antiviral T cell responses: prospects for immunotherapeutic vaccines. Immunol Res. 2006;35(1–2):137–50.

    Article  CAS  PubMed  Google Scholar 

  9. Rouse BT, Suvas S. Regulatory cells and infectious agents: detentes cordiale and contraire. J Immunol. 2004;173(4):2211–5.

    Article  CAS  PubMed  Google Scholar 

  10. Cunningham AL, et al. The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis. 2006;194 Suppl 1:S11–8.

    Article  CAS  PubMed  Google Scholar 

  11. Tyring S. Mucocutaneous manifestations of viral diseases. 1st ed. New York: Marcel Dekker; 2002.

    Book  Google Scholar 

  12. Ellermann-Eriksen S. Macrophages and cytokines in the early defence against herpes simplex virus. Virol J. 2005;2:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wald A, et al. Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons. N Engl J Med. 2000;342(12):844–50.

    Article  CAS  PubMed  Google Scholar 

  14. Hukkanen V, et al. Cytokines in experimental herpes simplex virus infection. Int Rev Immunol. 2002;21(4–5):355–71.

    Article  CAS  PubMed  Google Scholar 

  15. Theil D, et al. Prevalence of HSV-1 LAT in human trigeminal, geniculate, and vestibular ganglia and its implication for cranial nerve syndromes. Brain Pathol. 2001;11(4):408–13.

    Article  CAS  PubMed  Google Scholar 

  16. Simmons A, Tscharke D, Speck P. The role of immune mechanisms in control of herpes simplex virus infection of the peripheral nervous system. Curr Top Microbiol Immunol. 1992;179:31–56.

    CAS  PubMed  Google Scholar 

  17. Egan KP, Wu S, Wigdahl B, et al. Immunological control of herpes simplex virus infections. J Neurovirol. 2013;19(4):328–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobayashi M, Wilson AC, Chao MV, et al. Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor. Genes Dev. 2012;26:1527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Theil D, et al. Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol. 2003;163(6):2179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duerst RJ, Morrison LA. Innate immunity to herpes simplex virus type 2. Viral Immunol. 2003;16(4):475–90.

    Article  CAS  PubMed  Google Scholar 

  21. Luster AD. Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338(7):436–45.

    Article  CAS  PubMed  Google Scholar 

  22. Feduchi E, Alonso MA, Carrasco L. Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus. J Virol. 1989;63(3):1354–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol. 2001;19:65–91.

    Article  CAS  PubMed  Google Scholar 

  24. Vollstedt S, et al. Interleukin-12–and gamma interferon-dependent innate immunity are essential and sufficient for long-term survival of passively immunized mice infected with herpes simplex virus type 1. J Virol. 2001;75(20):9596–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leib DA, et al. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med. 1999;189(4):663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanangat S, et al. Herpes simplex virus type 1–mediated up-regulation of IL-12 (p40) mRNA expression. Implications in immunopathogenesis and protection. J Immunol. 1996;156(3):1110–6.

    CAS  PubMed  Google Scholar 

  27. Kumaraguru U, Rouse BT. The IL-12 response to herpes simplex virus is mainly a paracrine response of reactive inflammatory cells. J Leukoc Biol. 2002;72(3):564–70.

    CAS  PubMed  Google Scholar 

  28. Bettahi I, et al. Protective immunity to genital herpes simplex virus type 1 and type 2 provided by self-adjuvanting lipopeptides that drive dendritic cell maturation and elicit a polarized Th1 immune response. Viral Immunol. 2006;19(2):220–36.

    Article  CAS  PubMed  Google Scholar 

  29. Koelle DM, et al. Expression of cutaneous lymphocyte-associated antigen by CD8(+) T cells specific for a skin-tropic virus. J Clin Invest. 2002;110(4):537–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arvin AM, et al. Equivalent recognition of a varicellazoster virus immediate early protein (IE62) and glycoprotein I by cytotoxic T lymphocytes of either CD4+ or CD8+ phenotype. J Immunol. 1991;146(1):257–64.

    CAS  PubMed  Google Scholar 

  31. Posavad CM, Koelle DM, Corey L. High frequency of CD8+ cytotoxic T-lymphocyte precursors specific for herpes simplex viruses in persons with genital herpes. J Virol. 1996;70(11):8165–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen SH, et al. Persistent elevated expression of cytokine transcripts in ganglia latently infected with herpes simplex virus in the absence of ganglionic replication or reactivation. Virology. 2000;278(1):207–16.

    Article  CAS  PubMed  Google Scholar 

  33. Kinchington PR, St Leger AJ, Guedon JG, et al. Herpes simplex virus an varicella zoster virus, the house guests that never leave. Herpesviridae. 2012;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hayward AR, Read GS, Cosyns M. Herpes simplex virus interferes with monocyte accessory cell function. J Immunol. 1993;150(1):190–6.

    CAS  PubMed  Google Scholar 

  35. Coleman JL, Shukla D. Recent advances in vaccine development for herpes siplex virus types I and II. Hum Vaccin Imunothe. 2013;9(4):729–35.

    Article  CAS  Google Scholar 

  36. Stanberry LR, et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med. 2002;347(21):1652–61.

    Article  CAS  PubMed  Google Scholar 

  37. Whitacre CC, Reingold SC, O’Looney PA. A gender gap in autoimmunity. Science. 1999;283(5406):1277–8.

    Article  CAS  PubMed  Google Scholar 

  38. Belshe RB, et al. Efficacy results of a trial of a herpes simplex vaccine. N Engl J Med. 2012;366:34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wald A, Koelle DM, Fife K, et al. Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2seropositive persons. Vaccine. 2011;29:8520–9.

    Article  CAS  PubMed  Google Scholar 

  40. Biological efficacy study of HerpV vaccine with QS-21 to treat subjects with recurrent genital herpes. Retrieved July 15, 2014, from http://clinicaltrials.gov/show/NCT01687595.

  41. Skoberne M, Cardin R, Lee A, et al. An adjuvanted herpes simplex virus type 2 (HSV-2) subunit vaccine elicits a T cell response in mice and is an effective therapeutic vaccine in guinea pigs. J Virol. 2013;87:3930–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Safety and immunogenicity study of therapeutic HSV-2 vaccine. Retrieved July 15, 2014, from http://clinicaltrials.gov/show/NCT01667341.

  43. Awasthi S, Friedman HM. Status of prophylactic and therapeutic genital herpes vaccines. Current Opinion in Virology. 2014;6:6–12.

    Article  CAS  PubMed  Google Scholar 

  44. Ku CC, et al. Varicella-Zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol. 2005;79(5):2651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCrary ML, Severson J, Tyring SK. Varicella zoster virus. J Am Acad Dermatol. 1999;41(1):1–14; quiz 15–6.

    Article  CAS  PubMed  Google Scholar 

  46. Rockley PF, Tyring SK. Pathophysiology and clinical manifestations of varicella zoster virus infections. Int J Dermatol. 1994;33(4):227–32.

    Article  CAS  PubMed  Google Scholar 

  47. Quinlivan M, Breuer J. Molecular studies of Varicella zoster virus. Rev Med Virol. 2006;16(4):225–50.

    Article  CAS  PubMed  Google Scholar 

  48. Wang JP, et al. Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol. 2005;79(20):12658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jenkins DE, et al. Interleukin (IL)-10, IL-12, and interferon-gamma production in primary and memory immune responses to varicella-zoster virus. J Infect Dis. 1998;178(4):940–8.

    Article  CAS  PubMed  Google Scholar 

  50. Arvin AM, et al. Memory cytotoxic T cell responses to viral tegument and regulatory proteins encoded by open reading frames 4, 10, 29, and 62 of varicella-zoster virus. Viral Immunol. 2002;15(3):507–16.

    Article  CAS  PubMed  Google Scholar 

  51. Gilden DH, Kleinschmidt-DeMasters BK, LaGuardia JJ, et al. Neurologic complications of the reactivation of varicella-zoster virus. N Engl J Med. 2000;342(9):635–45.

    Article  CAS  PubMed  Google Scholar 

  52. Gary L, Gilden DH, Cohrs RJ. Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal ganglia. J Virol. 2006;80(10):4921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hornberger J, Robertus K. Cost-effectiveness of a vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. Ann Intern Med. 2006;145(5):317–25.

    Article  PubMed  Google Scholar 

  54. Cohen JI, et al. Varicella-zoster virus ORF4 latencyassociated protein is important for establishment of latency. J Virol. 2005;79(11):6969–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cohen JI, et al. Regions of the varicella-zoster virus open reading frame 63 latency-associated protein important for replication in vitro are also critical for efficient establishment of latency. J Virol. 2005;79(8):5069–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sato H, Pesnicak L, Cohen JI. Varicella-zoster virus ORF47 protein kinase, which is required for replication in human T cells, and ORF66 protein kinase, which is expressed during latency, are dispensable for establishment of latency. J Virol. 2003;77(20):11180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sato H, Pesnicak L, Cohen JI. Varicella-zoster virus open reading frame 2 encodes a membrane phosphoprotein that is dispensable for viral replication and for establishment of latency. J Virol. 2002;76(7):3575–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abendroth A, et al. Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J Virol. 2001;75(10):4878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abendroth A, et al. Modulation of major histocompatibility class II protein expression by varicella-zoster virus. J Virol. 2000;74(4):1900–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schmader K. Herpes zoster in older adults. Clin Infect Dis. 2001;32(10):1481–6.

    Article  CAS  PubMed  Google Scholar 

  61. Mitka M. FDA approves shingles vaccine: herpes zoster vaccine targets older adults. JAMA. 2006;296(2):157–8.

    Article  CAS  PubMed  Google Scholar 

  62. Drolet M, Oxman MN, Levin MJ, et al. Vaccination against herpes zoster in developed countries: state of the evidence. Hum Vaccin Immunother. 2013;9(5):1177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Arvin A. Aging, immunity, and the varicella-zoster virus. N Engl J Med. 2005;352(22):2266–7.

    Article  CAS  PubMed  Google Scholar 

  64. Akgul B, Cooke JC, Storey A. HPV-associated skin disease. J Pathol. 2006;208(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  65. Trottier H, Franco EL. The epidemiology of genital human papillomavirus infection. Vaccine. 2006;24 Suppl 1:S1–15.

    PubMed  Google Scholar 

  66. Speck LM, Tyring SK. Vaccines for the prevention of human papillomavirus infections. Skin Ther Lett. 2006;11(6):1–3.

    CAS  Google Scholar 

  67. Andersson S, et al. Expression of p16(INK4a) in relation to histopathology and viral load of ‘high-risk’ HPV types in cervical neoplastic lesions. Eur J Cancer. 2006;42(16):2815–20.

    Article  CAS  PubMed  Google Scholar 

  68. Ahmed AM, Madkan V, Tyring SK. Human papillomaviruses and genital disease. Dermatol Clin. 2006;24(2):157–65, vi.

    Article  CAS  PubMed  Google Scholar 

  69. Madkan VK, et al. Sex differences in the transmission, prevention, and disease manifestations of sexually transmitted diseases. Arch Dermatol. 2006;142(3):365–70.

    Article  PubMed  Google Scholar 

  70. Palefsky JM, et al. Prevalence and risk factors for human papillomavirus infection of the anal canal in human immunodeficiency virus (HIV)-positive and HIV-negative homosexual men. J Infect Dis. 1998;177(2):361–7.

    Article  CAS  PubMed  Google Scholar 

  71. Critchlow CW, et al. Effect of HIV infection on the natural history of anal human papillomavirus infection. AIDS. 1998;12(10):1177–84.

    Article  CAS  PubMed  Google Scholar 

  72. Pinto LA, et al. Cellular immune responses to human papillomavirus (HPV)-16 L1 in healthy volunteers immunized with recombinant HPV-16 L1 virus-like particles. J Infect Dis. 2003;188(2):327–38.

    Article  CAS  PubMed  Google Scholar 

  73. Ho GY, et al. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med. 1998;338(7):423–8.

    Article  CAS  PubMed  Google Scholar 

  74. Castle PE, et al. A prospective study of age trends in cervical human papillomavirus acquisition and persistence in Guanacaste. Costa Rica J Infect Dis. 2005;191(11):1808–16.

    Article  PubMed  Google Scholar 

  75. Orozco JJ, et al. Humoral immune response recognizes a complex set of epitopes on human papillomavirus type 6 l1 capsomers. J Virol. 2005;79(15):9503–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Scott M, Nakagawa M, Moscicki AB. Cell-mediated immune response to human papillomavirus infection. Clin Diagn Lab Immunol. 2001;8(2):209–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Coleman N, et al. Immunological events in regressing genital warts. Am J Clin Pathol. 1994;102(6):768–74.

    Article  CAS  PubMed  Google Scholar 

  78. Middleton K, et al. Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol. 2003;77(19):10186–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ghim S, et al. Spontaneously regressing oral papillomas induce systemic antibodies that neutralize canine oral papillomavirus. Exp Mol Pathol. 2000;68(3):147–51.

    Article  CAS  PubMed  Google Scholar 

  80. Vieira KB, Goldstein DJ, Villa LL. Tumor necrosis factor alpha interferes with the cell cycle of normal and papillomavirus-immortalized human keratinocytes. Cancer Res. 1996;56(10):2452–7.

    CAS  PubMed  Google Scholar 

  81. Kyo S, et al. Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology. 1994;200(1):130–9.

    Article  CAS  PubMed  Google Scholar 

  82. Oldak M, et al. Natural cell-mediated cytotoxicity of peripheral blood lymphocytes against target cells transfected with epidermodysplasia verruciformis-specific human papillomavirus type 8 L1 DNA sequences. Int J Mol Med. 2004;13(1):187–91.

    CAS  PubMed  Google Scholar 

  83. Jimenez-Flores R, et al. High-risk human papilloma virus infection decreases the frequency of dendritic Langerhans’ cells in the human female genital tract. Immunology. 2006;117(2):220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guess JC, McCance DJ. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J Virol. 2005;79(23):14852–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fausch SC, et al. Human papillomavirus can escape immune recognition through Langerhans cell phosphoinositide 3–kinase activation. J Immunol. 2005;174(11):7172–8.

    Article  CAS  PubMed  Google Scholar 

  86. Cardoso JC, Calonje E. Cutaneous manifestations of human papillomaviruses: a review. Acta Dermatoven APA. 2011;20(3):145–54.

    Google Scholar 

  87. Iacovides D, Michael S, Achilleos C, et al. Shared mechanisms in stemness and carcinogenesis: lessons from oncogenic viruses. Front Cell Infect Mircobiol. 2013;3:66.

    Google Scholar 

  88. da Silva-Diz V, Sole-Sanchez S, Valdes-Gutierrez A, et al. Progeny of Lgr5-expressing hair follicle stem cell contributes to papillomavirus-induced tumor development in epidermis. Oncogene. 2013;32:3732–43.

    Article  PubMed  CAS  Google Scholar 

  89. Brimer N, Lyons C, Vande Pol SB. Association of E6AP (UBE3A) with human papillomavirus type 11 E6 protein. Virology. 2007;358(2):303–10.

    Article  CAS  PubMed  Google Scholar 

  90. Hyland PL, McDade SS, McCloskey R, et al. Evidence for alteration of EZH2, BMI1, and KDM6S and epigenetic reprogramming in human papillomavirus type 16 E6/E7-expressing keratinocytes. J Virol. 2011;85(21):10999–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mclaughlin-Drubin ME, Crum CP, Münger K. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demythlase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A. 2011;108(5):2130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mota F, et al. The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clin Exp Immunol. 1999;116(1):33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goodman A, Wilbur DC. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 32–2003. A 37-year-old woman with atypical squamous cells on a Papanicolaou smear. N Engl J Med. 2003;349(16):1555–64.

    Article  CAS  PubMed  Google Scholar 

  94. Hubert P, et al. E-cadherin-dependent adhesion of dendritic and Langerhans cells to keratinocytes is defective in cervical human papillomavirus-associated (pre)neoplastic lesions. J Pathol. 2005;206(3):346–55.

    Article  CAS  PubMed  Google Scholar 

  95. Dieu-Nosjean MC, et al. Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med. 2000;192(5):705–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Connor JP, et al. Evaluation of Langerhans’ cells in the cervical epithelium of women with cervical intraepithelial neoplasia. Gynecol Oncol. 1999;75(1):130–5.

    Article  CAS  PubMed  Google Scholar 

  97. Ashrafi GH, et al. Down-regulation of MHC class I is a property common to papillomavirus E5 proteins. Virus Res. 2006;120(1–2):208–11.

    Article  CAS  PubMed  Google Scholar 

  98. Schapiro F, et al. Golgi alkalinization by the papillomavirus E5 oncoprotein. J Cell Biol. 2000;148(2):305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Marchetti B, et al. The E5 protein of BPV-4 interacts with the heavy chain of MHC class I and irreversibly retains the MHC complex in the Golgi apparatus. Oncogene. 2006;25(15):2254–63.

    Article  CAS  PubMed  Google Scholar 

  100. Koutsky LA, et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med. 2002;347(21):1645–51.

    Article  CAS  PubMed  Google Scholar 

  101. Roth SD, et al. Characterization of neutralizing epitopes within the major capsid protein of human papillomavirus type 33. Virol J. 2006;3:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Batista FD, Neuberger MS. B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J. 2000;19(4):513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen XS, et al. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 2000;5(3):557–67.

    Article  CAS  PubMed  Google Scholar 

  104. Stanley M. Immune responses to human papillomavirus. Vaccine. 2006;24 Suppl 1:S16–22.

    Article  PubMed  CAS  Google Scholar 

  105. Tyring SK. Immune-response modifiers: a new paradigm in the treatment of human papillomavirus. Curr Ther Res Clin Exp. 2000;61:584–96.

    Article  CAS  Google Scholar 

  106. Kim KS, Park SA, Ko K, et al. Current status of human papillomavirus vaccines. Clin Exp Vaccine Res. 2014;3:168–75.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Roteli-Martins CM, Naud P, De Borba P, et al. Sustained immunogenicity and efficacy of the HPV-16/18 AS04-adjuvanted vaccine: up to 8.4 years of follow-up. Hum Vaccin Immunother. 2012;8:390–7.

    Article  PubMed  Google Scholar 

  108. Einstein MH, Baron M, Levin MJ, et al. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: follow-up from months 12-24 in a Phase III randomized study of healthy women aged 18-45 years. Hum Vaccin. 2011;7:1343–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. UNAIDS Executive Summary. http://data.unaids.org/pub/globalreport/2006/2006_gr-executivesummary_en.pdf. 2006.

  110. UNAIDS Report on the Global AIDS Epidemic, 2013. UNAIDS Geneva. Retrieved on July 14th, 2014, from http://www.unaids.org/en/resources/documents/2013/name,85053,en.asp.

  111. Quinn TC, Overbaugh J. HIV/AIDS in women: an expanding epidemic. Science. 2005;308(5728):1582–3.

    Article  CAS  PubMed  Google Scholar 

  112. Pope M, Haase AT. Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat Med. 2003;9(7):847–52.

    Article  CAS  PubMed  Google Scholar 

  113. Ray SC, Quinn TC. Sex and the genetic diversity of HIV-1. Nat Med. 2000;6(1):23–5.

    Article  CAS  PubMed  Google Scholar 

  114. Addo MM, Altfeld M. Sex-based differences in HIV type 1 pathogenesis. J Infect Dis. 2014;209(s3):s86–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Steinman RM, et al. The interaction of immunodeficiency viruses with dendritic cells. Curr Top Microbiol Immunol. 2003;276:1–30.

    CAS  PubMed  Google Scholar 

  116. Qin S, et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest. 1998;101(4):746–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cavrois M, et al. Human immunodeficiency virus fusion to dendritic cells declines as cells mature. J Virol. 2006;80(4):1992–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  CAS  PubMed  Google Scholar 

  119. Hu J, Gardner MB, Miller CJ. Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J Virol. 2000;74(13):6087–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kawamura T, et al. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc Natl Acad Sci U S A. 2003;100(14):8401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Levy JA. Infection by human immunodeficiency virus—CD4 is not enough. N Engl J Med. 1996;335(20):1528–30.

    Article  CAS  PubMed  Google Scholar 

  122. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657–700.

    Article  CAS  PubMed  Google Scholar 

  123. Xu H, Wang X, Veazey RS. Mucosal immunology of HIV infection. Immunol Rev. 2013;254(1):10–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Blauvelt A, et al. Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J Clin Invest. 1997;100(8):2043–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kawamura T, et al. Decreased stimulation of CD4+ T cell proliferation and IL-2 production by highly enriched populations of HIV-infected dendritic cells. J Immunol. 2003;170(8):4260–6.

    Article  CAS  PubMed  Google Scholar 

  126. Kawamura T, et al. Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants. J Exp Med. 2000;192(10):1491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bakri Y, et al. The maturation of dendritic cells results in postintegration inhibition of HIV-1 replication. J Immunol. 2001;166(6):3780–8.

    Article  CAS  PubMed  Google Scholar 

  128. Granelli-Piperno A, et al. Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T- tropic virus to T cells. J Virol. 1998;72(4):2733–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sugaya M, et al. HIV-infected Langerhans cells preferentially transmit virus to proliferating autologous CD4+ memory T cells located within Langerhans cell-T cell clusters. J Immunol. 2004;172(4):2219–24.

    Article  CAS  PubMed  Google Scholar 

  130. Nabel GJ, Sullivan NJ. Antibodies and resistance to natural HIV infection. N Engl J Med. 2000;343(17):1263–5.

    Article  CAS  PubMed  Google Scholar 

  131. Bleul CC, et al. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A. 1997;94(5):1925–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Quaranta MG, et al. HIV-1 Nef induces dendritic cell differentiation: a possible mechanism of uninfected CD4(+) T cell activation. Exp Cell Res. 2002;275(2):243–54.

    Article  PubMed  CAS  Google Scholar 

  133. Mohan T, Bhatnagar S, Gupta DL, et al. Current understanding of HIV-1 and T-cell adaptive immunity: progress to date. Microb Pathog. 2014;73:60–9.

    Article  CAS  PubMed  Google Scholar 

  134. Galhardo MC, et al. Normal skin of HIV-infected individuals contains increased numbers of dermal CD8 T cells and normal numbers of Langerhans cells. Braz J Med Biol Res. 2004;37(5):745–53.

    Article  CAS  PubMed  Google Scholar 

  135. Barratt-Boyes SM, Zimmer MI, Harshyne L. Changes in dendritic cell migration and activation during SIV infection suggest a role in initial viral spread and eventual immunosuppression. J Med Primatol. 2002;31(4–5):186–93.

    Article  CAS  PubMed  Google Scholar 

  136. Hilleman MR. Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proc Natl Acad Sci U S A. 2004;101 Suppl 2:14560–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nattermann J, et al. HIV-1 infection leads to increased HLA-E expression resulting in impaired function of natural killer cells. Antivir Ther. 2005;10(1):95–107.

    CAS  PubMed  Google Scholar 

  138. Wooden SL, et al. Cutting edge: HLA-E binds a peptide derived from the ATP-binding cassette transporter multidrug resistance-associated protein 7 and inhibits NK cell-mediated lysis. J Immunol. 2005;175(3):1383–7.

    Article  CAS  PubMed  Google Scholar 

  139. Klenerman P, Wu Y, Phillips R. HIV: current opinion in escapology. Curr Opin Microbiol. 2002;5(4):408–13.

    Article  CAS  PubMed  Google Scholar 

  140. Lema D, Garcia A, De Sanctis JB. HIV vaccines: a brief overview. Scand J Immunol. 2014;80(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  141. McCarthy M. HIV vaccine fails in phase 3 trial. Lancet. 2003;361(9359):755–6.

    Article  PubMed  Google Scholar 

  142. Evans TG, et al. A canarypox vaccine expressing multiple human immunodeficiency virus type 1 genes given alone or with rgp120 elicits broad and durable CD8+ cytotoxic T lymphocyte responses in seronegative volunteers. J Infect Dis. 1999;180(2):290–8.

    Article  CAS  PubMed  Google Scholar 

  143. Chiodi F, Weiss RA. Human immunodeficiency virus antibodies and the vaccine problem. J Intern Med. 2014;275(5):444–55.

    Article  CAS  PubMed  Google Scholar 

  144. Smith PL, Tanner H, Dalgleish A. Developments in HIV-1 immunotherapy and therapeutic vaccination. F1000Prime Rep. 2014;6:43.

    PubMed  PubMed Central  Google Scholar 

  145. Zolla-Pazner S. A critical question for HIV vaccine development: which antibodies to induce? Science. 2014;345(6193):167–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Klein F, Mouquet H, Dosenovic P, et al. Antibodies in HIV-1 vaccine development and therapy. Science. 2013;341:1199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Krathwohl MD, et al. Functional characterization of the C—C chemokine-like molecules encoded by molluscum contagiosum virus types 1 and 2. Proc Natl Acad Sci U S A. 1997;94(18):9875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dohil MA, Lin P, Lee J, et al. The epidemiology of molluscum contagiosum in children. J Am Acad Dermatol. 2006;54:47.

    Article  PubMed  Google Scholar 

  149. Viac J, Chardonnet Y. Immunocompetent cells and epithelial cell modifications in molluscum contagiosum. J Cutan Pathol. 1990;17(4):202–5.

    Article  CAS  PubMed  Google Scholar 

  150. Xiang Y, Moss B. IL-18 binding and inhibition of interferon gamma induction by human poxvirus-encoded proteins. Proc Natl Acad Sci U S A. 1999;96(20):11537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Watanabe T, et al. Antibodies to molluscum contagiosum virus in the general population and susceptible patients. Arch Dermatol. 2000;136(12):1518–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. Tyring MD, PhD .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    Herpes simplex virus produces latency associated transcripts (LATs) which have been found in high concentrations in latently infected neurons. LATs help to increase the efficiency of latency and subsequent reactivation by what mechanism?

    1. A.

      By interfering with production and secretion of IL-1 and TNF-α

    2. B.

      By destroying the homing receptor (CLA) on CD8+ T cells

    3. C.

      By inhibiting the production of proteins involved in the apoptosis pathway

    4. D.

      By altering the activity of neutrophils, macrophages, and NK cells

  • Answer/Explanation: answer C

  • The herpes simplex virus does alter the activity of neutrophils, macrophages, and NK cells. As such, it does interfere with the production and secretion of some pro-inflammatory cytokines, such as IL-1 and TNF. However, LATs are directly responsible for inhibiting granzyme-B and capsase-8 mediated apoptosis

  1. 2.

    Depletion of what cell line has been implicated with the enhanced survival, prolonged course of infection, and oncogenic transformation associated with some high risk HPV types?

    1. A.

      T helper cell

    2. B.

      Langerhans cell

    3. C.

      Macrophage

    4. D.

      NK cell

  • Answer/Explanation: answer B

  • Depletion of Langerhans cells has been documented in HPV infections along with a lack of expression of certain cell signaling molecules (CD54, CD86, TNF-α, etc.). Cumulatively, these features decrease the antigen-presenting capacity of Langerhans cells and can induce immune tolerance and ultimately oncogenic transformation

  1. 3.

    The early peak in viral replication that is integral for large scale HIV amplification and chronic viral persistence is directly attributable to infection of what cell line?

    1. A.

      CD4+CCR5+ T cells in the intestinal mucosa

    2. B.

      Dendritic cells (DC) located in draining lymph nodes

    3. C.

      CD4+ ICAM1+ T cells in keratinocytes

    4. D.

      Effector Th cells in mucosal surfaces

  • Answer/Explanation: answer A

  • HIV does initially infect DC and exploits their natural trafficking properties to transfer virus to CD4+ T cells in draining lymph nodes. However, the cell line directly responsible for the early peak in viral replication is infection of CD4+CCR5+ T cells in the lamina propria of intestinal mucosa. The collection of T cells here exceeds the total number of T cells in all other body sites combined and is responsible for the early and massive amplification of the virus

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kollipara, R. et al. (2017). Immunodermatology and Viral Skin Infection. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics