Skip to main content

Innate and Adaptive Components of the Cutaneous Immune Barrier: The Central Role of Dendritic Cells

  • Chapter
  • First Online:

Abstract

Immune responses initiated in the skin can be extremely powerful at both a local and systemic level. One of the milestones in elucidating the mechanisms underlying this phenomenon was the discovery of the T cell response-inducing function of Langerhans cells (LC). In the meantime, we know that the family of dendritic antigen-presenting cells in the skin is much bigger and, in addition to LC, includes dermal dendritic cells (DDC), CD141 + DC, CD14 + DC, inflammatory DC and plasmacytoid DC. Depending on the cellular and molecular milieu, these cells can function as either sensitizing or tolerizing elements. Signals transmitted from (innate) receptors recognizing damage- or pathogen-associated patterns are involved in directing these different functions in DC. Toll-like pathogen recognition receptors (TLR) have been particularly well investigated in this regard. The distinct distribution of TLR on LC and other DC subsets allows the immune system to elegantly orchestrate the regulatory and pro-inflammatory functions of these cells. Intriguingly, TLR signaling in DC/LC not only allows to initiate adaptive immune responses, but also directly induces innate effector functions. This is demonstrated by our findings on the mechanisms underlying basal cell carcinoma (BCC) regression upon treatment with the pharmacological TLR7 agonist imiquimod. We observed that in imiquimod-treated BCC, plasmacytoid DC directly kill tumor cells via the apoptosis-inducing molecule TRAIL. Melanoma cells can also become TRAIL-susceptible, but the magnitude of this phenomenon varies from patient to patient. Our recent findings show that TRAIL susceptibility of melanoma cell lines can be increased upon exposure to the anti-inflammatory compound diclofenac.

Taken together, we begin to understand the exact position of LC and DC in the highly complex circuits of the immune system in the skin and how these cells could be manipulated for therapeutic purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

BCC:

Basal cell carcinoma

CHS:

Contact hypersensitivity

DC:

Dendritic cell

DDC:

Dermal dendritic cell

dsRNA:

Double-strain RNA

LC:

Langerhans cell

LPS:

Lipopolysaccharides

LTA:

Lipotechoic acid

MHC:

Majory histocompatibility complex

PAMP:

Pathogen-associated molecular pattern

pDC:

Plasmacytoid dendritic cell

PRR:

Pattern recognition receptor

S. :

Staphylococcus

ssRNA:

Single-stranded RNA

TLR:

Toll-like receptor

TRAIL:

Tumor necrosis factor related apoptosis inducing ligand

UV:

Ultraviolet

poly I:C:

Polyinosinic:polycytidylic acid

References

  1. Jenner E. An inquiry into the causes and effects of the variolae vaccinae, a disease discovered in some of the western countries of England, particularly Gloucestershire, and known by the name of “the Cow Pox”. 1798. Reprinted by Milan: R Lier & Co, 1923:84

    Google Scholar 

  2. Besredka A, Gross L. De l’immunisation contre le sarcome de la souris par la voie intracutanée. Ann Inst Past. 1935;55:491–500.

    Google Scholar 

  3. Braathen LR, Thorsby E. Studies on human epidermal Langerhans cells. I. Allo-activating and antigen-presenting capacity. Scand J Immunol. 1980;11(4):401–8.

    Article  CAS  PubMed  Google Scholar 

  4. Stingl G et al. The functional role of Langerhans cells. J Invest Dermatol. 1980;74(5):315–8.

    Article  CAS  PubMed  Google Scholar 

  5. Streilein JW et al. Tolerance or hypersensitivity to 2,4-dinitro-1-fluorobenzene: the role of Langerhans cell density within epidermis. J Invest Dermatol. 1980;74(5):319–22.

    Article  CAS  PubMed  Google Scholar 

  6. Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985;161(3):526–46.

    Article  CAS  PubMed  Google Scholar 

  7. Seneschal J et al. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity. 2012;36(5):873–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stary G et al. Glucocorticosteroids modify Langerhans cells to produce TGF-beta and expand regulatory T cells. J Immunol. 2011;186(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  9. Loser K et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med. 2006;12(12):1372–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kaplan DH et al. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity. 2005;23(6):611–20.

    Article  CAS  PubMed  Google Scholar 

  11. Haniffa M et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37(1):60–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jongbloed SL et al. Human CD141+ (BDCA-3) + dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology. 2013;140(1):22–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merad M et al. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.

    Article  CAS  PubMed  Google Scholar 

  15. Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev. 2009;227(1):221–33.

    Article  CAS  PubMed  Google Scholar 

  16. de Koning HD et al. Pattern recognition receptors in infectious skin diseases. Microbes Infect. 2012;14(11):881–93.

    Article  PubMed  Google Scholar 

  17. Lebre MC et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007;127(2):331–41.

    Article  CAS  PubMed  Google Scholar 

  18. Flacher V et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and gram-positive bacteria. J Immunol. 2006;177(11):7959–67.

    Article  CAS  PubMed  Google Scholar 

  19. Takeuchi J et al. Down-regulation of Toll-like receptor expression in monocyte-derived Langerhans cell-like cells: implications of low-responsiveness to bacterial components in the epidermal Langerhans cells. Biochem Biophys Res Commun. 2003;306(3):674–9.

    Article  CAS  PubMed  Google Scholar 

  20. Oosterhoff D et al. Intradermal delivery of TLR agonists in a human explant skin model: preferential activation of migratory dendritic cells by polyribosinic-polyribocytidylic acid and peptidoglycans. J Immunol. 2013;190(7):3338–45.

    Article  CAS  PubMed  Google Scholar 

  21. van der Aar AM et al. Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol. 2007;178(4):1986–90.

    Article  PubMed  Google Scholar 

  22. Enk AH et al. Inhibition of Langerhans cell antigen-presenting function by IL-10. A role for IL-10 in induction of tolerance. J Immunol. 1993;151(5):2390–8.

    CAS  PubMed  Google Scholar 

  23. Lai Y et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15(12):1377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lai Y et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130(9):2211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol. 2008;8(8):594–606.

    Article  CAS  PubMed  Google Scholar 

  26. Sugita K et al. Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clin Exp Immunol. 2007;147(1):176–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Aar AM et al. Cutting edge: virus selectively primes human Langerhans cells for CD70 expression promoting CD8+ T cell responses. J Immunol. 2011;187(7):3488–92.

    Article  PubMed  Google Scholar 

  28. Martin SF et al. Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity. J Exp Med. 2008;205(9):2151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Enk AH, Katz SI. Early molecular events in the induction phase of contact sensitivity. Proc Natl Acad Sci U S A. 1992;89(4):1398–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt M et al. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 2010;11(9):814–9.

    Article  CAS  PubMed  Google Scholar 

  31. Haley K et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J Immunol. 2012;188(9):4334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hasannejad H et al. Selective impairment of Toll-like receptor 2-mediated proinflammatory cytokine production by monocytes from patients with atopic dermatitis. J Allergy Clin Immunol. 2007;120(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  33. Niebuhr M et al. Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis. Allergy. 2009;64(11):1580–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kuo IH et al. Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Invest Dermatol. 2013;133(4):988–98.

    Article  CAS  PubMed  Google Scholar 

  35. Hemmi H et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200.

    Article  CAS  PubMed  Google Scholar 

  36. Diebold SS et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31.

    Article  CAS  PubMed  Google Scholar 

  37. Beutner KR et al. Treatment of genital warts with an immune-response modifier (imiquimod). J Am Acad Dermatol. 1998;38(2 Pt 1):230–9.

    Article  CAS  PubMed  Google Scholar 

  38. Wagstaff AJ, Perry CM. Topical imiquimod: a review of its use in the management of anogenital warts, actinic keratoses, basal cell carcinoma and other skin lesions. Drugs. 2007;67(15):2187–210.

    Article  CAS  PubMed  Google Scholar 

  39. Palamara F et al. Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J Immunol. 2004;173(5):3051–61.

    Article  CAS  PubMed  Google Scholar 

  40. Stary G et al. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med. 2007;204(6):1441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalb ML et al. TRAIL(+) human plasmacytoid dendritic cells kill tumor cells in vitro: mechanisms of imiquimod- and IFN-alpha-mediated antitumor reactivity. J Immunol. 2012;188(4):1583–91.

    Article  CAS  PubMed  Google Scholar 

  42. Drobits B et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest. 2012;122(2):575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Griffith TS et al. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol. 1998;161(6):2833–40.

    CAS  PubMed  Google Scholar 

  44. Passante E et al. Systems analysis of apoptosis protein expression allows the case-specific prediction of cell death responsiveness of melanoma cells. Cell Death Differ. 2013;20(11):1521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fecker LF et al. Enhanced death ligand-induced apoptosis in cutaneous SCC cells by treatment with diclofenac/hyaluronic acid correlates with downregulation of c-FLIP. J Invest Dermatol. 2010;130(8):2098–109.

    Article  CAS  PubMed  Google Scholar 

  46. Tse AK et al. Indomethacin sensitizes TRAIL-resistant melanoma cells to TRAIL-induced apoptosis through ROS-mediated upregulation of death receptor 5 and downregulation of survivin. J Invest Dermatol. 2014;134(5):1397–407.

    Article  CAS  PubMed  Google Scholar 

  47. Romani N et al. Targeting skin dendritic cells to improve intradermal vaccination. Curr Top Microbiol Immunol. 2012;351:113–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hawiger D et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194(6):769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sancho D et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature. 2009;458(7240):899–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chatterjee B et al. Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells. Blood. 2012;120(10):2011–20.

    Article  CAS  PubMed  Google Scholar 

  51. Li D et al. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J Exp Med. 2012;209(1):109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Toke ER et al. Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes. Gene Ther. 2014;21(6):566–74.

    Article  CAS  PubMed  Google Scholar 

  53. Zaric M et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano. 2013;7(3):2042–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lavelle EC et al. Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J Immunol. 2003;171(5):2384–92.

    Article  CAS  PubMed  Google Scholar 

  55. Krishnaswamy JK, Chu T, Eisenbarth SC. Beyond pattern recognition: NOD-like receptors in dendritic cells. Trends Immunol. 2013;34(5):224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Stingl MD .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    Which one of the following statements on LC in the skin is correct?

    1. A.

      UV-irradiation and the treatment with corticosteroids enhance the ability of LCs to induce cytotoxic T cell responses

    2. B.

      LC are exclusive stimulators of Th1 cells

    3. C.

      Under certain conditions, LC can induce the expansion of Tregs and down-regulate proliferative and cytotoxic T cell responses

    4. D.

      In contrast to keratinocytes, LC cannot produce any inflammatory cytokines

    5. E.

      LC are found in the dermis but not in the epidermis

  2. 2.

    Which statement regarding TLR is true?

    1. A.

      TLR are exclusively expressed on cells of hematopoietic origin

    2. B.

      While TLR signaling is a major modulator of innate immune responses, it does not have any effect on adaptive immune responses

    3. C.

      TLR recognizing lipids are located on the outer cell membrane while those recognizing proteins are found intracellularly

    4. D.

      The different DC subsets in skin express the same TLR repertoire

    5. E.

      TLR belong to the PRR family that includes receptors recognizing damage- and pathogen-associated molecular patterns

  3. 3.

    Which statement does not describe parts of the mechanism underlying the imiquimod-induced clinical regression of BCC?

    1. A.

      Imiquimod acts as an artificial TLR7-ligand

    2. B.

      Imiquimod induces pDC to kill BCC cells in a mostly TRAIL-mediated fashion

    3. C.

      Imiquimod induces the killer molecule TRAIL on peripheral blood pDC in an IFN-α-dependent manner

    4. D.

      Imiquimod-treated BCC become selectively infiltrated by NK cells

    5. E.

      Imiquimod application leads to the apoptosis of BCC cancer cells

Answers

  1. 1.

    C

  2. 2.

    E

  3. 3.

    D

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stingl, G., Brüggen, MC., Vázquez-Strauss, M. (2017). Innate and Adaptive Components of the Cutaneous Immune Barrier: The Central Role of Dendritic Cells. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics