Teixeira, T., Dublon, G., Savvides, A.: A survey of human-sensing: methods for detecting presence, count, location, track, and identity. ACM Comput. Surv. 5, 1–77 (2010)
Google Scholar
Ekimov, A., Sabatier, J.M.: Vibration and sound signatures of human footsteps in buildings. J. Acoust. Soc. Am. 120(2), 762–768 (2006)
CrossRef
Google Scholar
Jin, X., Sarkar, S., Ray, A., Gupta, S., Damarla, T.: Target detection and classification using seismic and PIR sensors. IEEE Sensors J. 12(6), 1709–1718 (2012)
CrossRef
Google Scholar
Sun, Z., Pan, S., Su, Y.-C., Zhang, P.: Headio: zero-configured heading acquisition for indoor mobile devices through multimodal context sensing. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 33–42. ACM, New York (2013)
Google Scholar
Sun, Z., Purohit, A., Chen, K., Pan, S., Pering, T., Zhang, P.: PANDAA: physical arrangement detection of networked devices through ambient-sound awareness. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 425–434. ACM, New York (2011)
Google Scholar
Sun, Z., Purohit, A., Bose, R., Zhang, P.: Spartacus: spatially-aware interaction for mobile devices through energy-efficient audio sensing. In: Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, pp. 263–276. ACM, New York (2013)
Google Scholar
Nunes, D.S, Zhang, P., Silva, J.S.: A survey on human-in-the-loop applications towards an internet of all. IEEE Commun. Surv. Tutorials 17(2), 944–965 Secondquarter (2015)
Google Scholar
Purohit, A., Sun, Z., Pan, S., Zhang, P.: Sugartrail: indoor navigation in retail environments without surveys and maps. In: 10th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2013, pp. 300–308. IEEE, New York (2013)
Google Scholar
Mirshekari, M., Pan, S., Bannis, A., Pui, Y., Lam, M., Zhang, P., Noh, H.Y.: Step-level person localization through sparse sensing of structural vibration. In: Proceedings of the 14th International Conference on Information Processing in Sensor Networks, pp. 376–377. ACM, New York (2015)
Google Scholar
Pan, S., Bonde, A., Jing, J., Zhang, L., Zhang, P., Noh, H.Y.: Boes: building occupancy estimation system using sparse ambient vibration monitoring. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, pp. 90611O–90611O. International Society for Optics and Photonics (2014)
Google Scholar
Pan, S., Wang, N., Qian, Y., Velibeyoglu, I., Noh, H.Y., Zhang, P.: Indoor person identification through footstep induced structural vibration. In: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, pp. 81–86. ACM, New York (2015)
Google Scholar
Subramanian, A., Mehrotra, K.G., Mohan, C.K., Varshney, P.K., Damarla T.: Feature selection and occupancy classification using seismic sensors. In: Trends in Applied Intelligent Systems, pp. 605–614. Springer, Berlin (2010)
Google Scholar
Bland, R.E.: Acoustic and seismic signal processing for footstep detection. Ph.D. thesis, Massachusetts Institute of Technology (2006)
Google Scholar
Alyamkin, S.A., Eremenko, S.I.: Pedestrian detection algorithms based on an analysis of the autocorrelation function of a seismic signal. Optoelectronics Instrum. Data Process. 47(2), 124–129 (2011)
CrossRef
Google Scholar
Succi, G.P., Clapp, D., Gampert, R., Prado, G.: Footstep detection and tracking. In: Aerospace/Defense Sensing, Simulation, and Controls, pp. 22–29. International Society for Optics and Photonics (2001)
Google Scholar
Koç, G., Yegin, K.: Footstep and vehicle detection using slow and quick adaptive thresholds algorithm. Int. J. Distrib. Sens. Netw. 2013, 9 (2013). doi:10.1155/2013/783604
Google Scholar
Houston, K.M., McGaffigan, D.P.: Spectrum analysis techniques for personnel detection using seismic sensors. In: AeroSense 2003, pp. 162–173. International Society for Optics and Photonics (2003)
Google Scholar
Xing, H.-F., Li, F., Liu, Y.-L.: Wavelet denoising and feature extraction of seismic signal for footstep detection. In: ICWAPR’07. International Conference on Wavelet Analysis and Pattern Recognition, 2007, vol. 1, pp. 218–223. IEEE, New York (2007)
Google Scholar
Ripul Ghosh, Aparna Akula, Satish Kumar, and HK Sardana. Time-frequency analysis based robust vehicle detection using seismic sensor. J. Sound Vib. 346, 424–434 (2015)
Google Scholar
Huang, J., Zhou, Q., Zhang, X., Song, E., Li, B., Yuan, X.: Seismic target classification using a wavelet packet manifold in unattended ground sensors systems. Sensors 13(7), 8534–8550 (2013)
Google Scholar
Noh, H.Y., Nair, K.K., Lignos, D.G., Kiremidjian, A.S.: Use of wavelet-based damage-sensitive features for structural damage diagnosis using strong motion data. J. Struct. Eng. 137(10), 1215–1228 (2011)
CrossRef
Google Scholar
Noh, H., Kiremidjian, A.S.: On the use of wavelet coefficient energy for structural damage diagnosis. In: Proceedings of the10th International Conference on Structural Safety and Reliability, Osaka (2009)
Google Scholar
Noh, H.Y., Lignos, D., Nair, K.K., Kiremidjian, A.S.: Application of wavelet based damage sensitive features for structural damage diagnosis. In: Proceedings of the 7th International Workshop on Structural Health Monitoring (2009)
Google Scholar
Ling, T.-H., Li, X.-B.: Analysis of energy distributions of millisecond blast vibration signals using the wavelet packet method. Chin. J. Rock Mech. Eng. 24(7), 1117–1122 (2005)
Google Scholar
David, M.J.: Tax. one-class classification; concept-learning in the absence of counter-examples. ASCI Dissertation Series, 65 (2001)
Google Scholar
Khan, S.S., Madden, M.G.: One-class classification: taxonomy of study and review of techniques. Knowl. Eng. Rev. 29(03), 345–374 (2014)
Google Scholar
Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification. In Artificial Intelligence and Cognitive Science, pp. 188–197. Springer, Berlin (2010)
Google Scholar
Chang, C.-C., Lin, C.-J.: Training v-support vector classifiers: theory and algorithms. Neural Comput. 13(9), 2119–2147 (2001)
CrossRef
MATH
Google Scholar
Schölkopf, B., et al.: Support vector method for novelty detection. NIPS. 12 (1999)
Google Scholar
Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)
CrossRef
MATH
Google Scholar
Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D., Meijer, K., Crompton, R.: Activity identification using body-mounted sensors a review of classification techniques. Physiol. Meas. 30(4), R1(2009)
Google Scholar
Li, K.-L., Huang, H.-K., Tian, S.-F., Xu, W.: Improving one-class SVM for anomaly detection. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3077–3081. IEEE, New York (2003)
Google Scholar
Shin, H.J., Eom, D.-H., Kim, S.-S.: One-class support vector machines an application in machine fault detection and classification. Comput. Ind. Eng. 48(2), 395–408 (2005)
CrossRef
Google Scholar
Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. J. Mach. Learn. Res. 2, 139–154 (2002)
MATH
Google Scholar
Rabaoui, A., Davy, M., Rossignol, S., Lachiri, Z., Ellouze, N.: Improved one-class SVM classifier for sounds classification. In: IEEE Conference on Advanced Video and Signal Based Surveillance, 2007. AVSS 2007, pp. 117–122. IEEE, New York (2007)
Google Scholar
Zhou, J, Chan, K.L., Chong, V.F.H., Krishnan, S.M.: Extraction of brain tumor from mr images using one-class support vector machine. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005, pp. 6411–6414. IEEE, New York (2006)
Google Scholar
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)
CrossRef
MATH
Google Scholar
Ren, W.-X., Zong, Z.-H.: Output-only modal parameter identification of civil engineering structures. Struct. Eng. Mech. 17(3–4), 429–444 (2004)
CrossRef
Google Scholar
Edwards, M., Xie, X.: Footstep pressure signal analysis for human identification. In: 2014 7th International Conference on Biomedical Engineering and Informatics (BMEI), pp. 307–312. IEEE, New York (2014)
Google Scholar
Sabatier, J.M., Ekimov, A.E.: A review of human signatures in urban environments using seismic and acoustic methods. In: 2008 IEEE Conference on Technologies for Homeland Security, pp. 215–220. IEEE, New York (2008)
Google Scholar
I/O Sensor Nederland bv. SM-24 Geophone Element, 2006. P/N 1004117
Google Scholar
Aggarwal, C.C.: Outlier Analysis. Springer Science & Business Media, Berlin (2013)
CrossRef
MATH
Google Scholar
Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)
Google Scholar