Nonlinear System Identification of Mechanical Interfaces Based on Wave Scattering

  • Keegan J. Moore
  • Mehmet Kurt
  • Melih Eriten
  • D. Michael McFarland
  • Lawrence A. Bergman
  • Alexander F. Vakakis
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

We study stress wave propagation in two impulsively forced split Hopkinson bar systems: one with a prestressed interface and one with a frictional interface. We first consider only primary wave transmission and reflection, allowing for reduction of the problem to a first-order, strongly, nonlinear ordinary differential equation. A high-order finite element model is then developed and used to validate the results of the primary-pulse model. A spring that hardens with increasing preload is used to model the prestressed interface while an Iwan element is used to model the frictional interface. Using the primary-wave propagation model, we perform nonlinear system identification by matching simulation and experiment results and identify the nonlinear hardening characteristics for the prestressed interface and Iwan parameters for the frictional interface. These parameters are then used in the finite element model to compare the experimentally measured secondary effects with the simulated effects. Our results demonstrate that the primary-wave propagation model can be used as a reduced order model for nonlinear system identification at a fraction of the computational cost of higher-order models.

Keywords

Wave propagation Iwan elements Mechanical joints Nonlinear system identification Interface dynamics 

References

  1. 1.
    Hopkinson, B.: A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos. Trans. R. Soc. A 213, 437–456 (1914)CrossRefGoogle Scholar
  2. 2.
    Kolsky, H.: An Investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. B62, 676–700 (1949)CrossRefGoogle Scholar
  3. 3.
    Gray, G.T.: Classical Split Hopkinson pressure bar technique. In: Kuhn, H., Medlin, D. (eds.) ASM Handbook, Vol. 8, Mechanical Testing and Evaluation, pp. 462–476. ASM International, Materials Park (2000)Google Scholar
  4. 4.
    Rajagopalan, S., Prakash, V.: A modified torsional Kolsky bar for investigating dynamic friction. Exp. Mech. 39(4), 295–303 (1999)CrossRefGoogle Scholar
  5. 5.
    Espinosa, H.D., Patanella, A., Fischer, M.: A novel dynamic friction experiment using a modified Kolsky bar apparatus. Exp. Mech. 40(2), 138–153 (2000)CrossRefGoogle Scholar
  6. 6.
    Foley, J. R., Dodson, J. C., McKinnon, C. M., Luk, V. K., and Falbo, G. L.: Split Hopkinson bar experiments of preloaded interfaces. In: Proceedings of the IMPLAST 2010 conference, Society for Experimental Mechanics, 2010Google Scholar
  7. 7.
    Dodson, J.C., Wolfson, J., Foley, J.R., Inman, D.J.: Transmission of guided waves across prestressed interfaces. In: Adams D. (ed.) Topics in Nonlinear Dynamics, Conference Proceedings of the Society of Experimental Mechanics Series 28, vol. 3, pp. 83–94. Springer, New York (2012)Google Scholar
  8. 8.
    Dodson, J.C., Lowe, R.D., Foley, J.R., Mougeotte, C., Geissler, D., Cordes, J.: Dynamics of interfaces with static initial loading. In: Song B. (ed.) Dynamic Behavior of Materials, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 1, pp. 37–50. Springer, New York (2014)Google Scholar
  9. 9.
    Pilipchuck, V.N., Azeez, M.A.F., Vakakis, A.F.: Primary-pulse transmission in strongly nonlinear periodic system. Nonlinear Dyn. 11, 61–81 (1996)CrossRefGoogle Scholar
  10. 10.
    Starosvetsky, Y., Vakakis, A.F.: Primary wave transmission in systems of elastic rods with granular interfaces. Wave Motion 48, 568–585 (2011)CrossRefMATHGoogle Scholar
  11. 11.
    Starosvetsky, Y., Jayaprakash, K.R., Vakakis, A.F., Kerschen, G., Manevitch, L.I.: Effective particles and classification of the dynamics of homogeneous granular chains with no precompression. Phys. Rev. E 85, 036606 (2012)CrossRefGoogle Scholar
  12. 12.
    Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. ASME J. Appl. Mech. 33, 839–900 (1996)Google Scholar
  13. 13.
    Iwan, W.B.: On a class of models for the yielding behavior of continuous and composite systems. ASME J. Appl. Mech. 34, 612–617 (1967)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • Keegan J. Moore
    • 1
  • Mehmet Kurt
    • 2
  • Melih Eriten
    • 3
  • D. Michael McFarland
    • 4
  • Lawrence A. Bergman
    • 4
  • Alexander F. Vakakis
    • 1
  1. 1.Department of Mechanical Science and EngineeringUniversity of IllinoisUrbanaUSA
  2. 2.Department of BioengineeringStanford UniversityStanfordUSA
  3. 3.Department of Mechanical EngineeringUniversity of Wisconsin at MadisonMadisonUSA
  4. 4.Department of Aerospace EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations