Skip to main content

Transparent Carbon Nanotubes (CNTs) as Antireflection and Self-cleaning Solar Cell Coating

  • Chapter
  • First Online:
Engineering Applications of Nanotechnology

Abstract

Carbon nanotubes have fascinating chemical and physical properties as indicated by graphite and diamond characteristics, and the reason is their individual atomic structure. They have acquired critical achievements in various fields such as materials, electronic devices, energy storage, separation, and sensors. Recently, antireflective coatings with self-cleaning properties attract critical consideration for their theoretical characteristics and their wide-ranging applications. In this chapter, the benefits of using CNTs as an antireflection and self-cleaning thin coating layer have been discussed to improve mechanical and electrical behavior of solar cells. Transfer-matrix method (TMM) and finite-difference time-domain (FDTD) method were studied as most suitable technique for thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angmo, D., Hösel, M., & Krebs, F. C. (2012). All solution processing of ITO free organic solar cell modules directly on barrier foil. Solar Energy Materials and Solar Cells, 107, 329–336.

    Article  Google Scholar 

  • Avouris, P. (2002). Carbon nanotube electronics. Chemical Physics Letters, 281, 429–445.

    Google Scholar 

  • Belin, T., & Epron, F. (2005). Characterization methods of carbon nanotubes: A review. Materials Science and Engineering B, 119(2), 105–118. doi:10.1016/j.mseb.2005.02.046

    Article  Google Scholar 

  • Benzekkour, N., Ghomrani, F. Z., Gabouze, N., Kermadi, S., Boumaour, M., & Ferdjani, K. (2009) Formation of rough TiO2 thin films on glass and porous silicon by sol-gel method. Materials Science Forum, 609, 139–143. doi:10.4028/www.scientific.net/MSF.609.139

  • Cai, J., & Qi, L. (2015). Recent advances in antireflective surfaces based on nanostructure arrays. Materials Horizons, 2(1), 37–53. doi:10.1039/c4mh00140k

    Article  Google Scholar 

  • Chee Howe See, A. T. H. (2007). A Review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Industrial and Engineering Chemistry Research, 46(4).

    Google Scholar 

  • Chee Howe See, O. M. D., MacKenzie, Kieran J., & Harris, Andrew T. (2008). Process parameter interaction effects during carbon nanotube synthesis in fluidized beds. Industrial and Engineering Chemistry, 47, 7686–7692.

    Article  Google Scholar 

  • Cui, K., Anisimov, A. S., Chiba, T., Fujii, S., Kataura, H., Nasibulin, A. G., et al. (2014). Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. Journal of Materials Chemistry A, 2(29), 11311–11318. doi:10.1039/c4ta01353k

    Article  Google Scholar 

  • Danafar, F., Fakhru’l-Razi, A., Mohd Salleh, M. A., & Awang Biak, D. R. (2011). Influence of catalytic particle size on the performance of fluidized-bed chemical vapor deposition synthesis of carbon nanotubes. Chemical Engineering Research and Design, 89(2), 214–223. doi:10.1016/j.cherd.2010.05.004

    Article  Google Scholar 

  • Danafar, F., Fakhru’l-Razi, A., Salleh, M. A. M., & Biak, D. R. A. (2009). Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—A review. Chemical Engineering Journal, 155(1–2), 37–48. doi:10.1016/j.cej.2009.07.052

    Article  Google Scholar 

  • Deinega, A., Belousov, S., Valuev, I. (2013) Transfer-matrix approach for finite-difference time-domain simulation of periodic structures. Physical Review E, 88(5). doi:10.1103/PhysRevE.88.053305

  • Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4, 157–175.

    Article  Google Scholar 

  • Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., et al. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicological Sciences, 92(1), 5–22. doi:10.1093/toxsci/kfj130

    Article  Google Scholar 

  • Duche, D., Torchio, P., Escoubas, L., Monestier, F., Simon, J.-J., Flory, F., et al. (2009). Improving light absorption in organic solar cells by plasmonic contribution. Solar Energy Materials and Solar Cells, 93(8), 1377–1382. doi:10.1016/j.solmat.2009.02.028

    Article  Google Scholar 

  • Faustini, M., Nicole, L., Boissière, Cd, Innocenzi, P., Cm, Sanchez, & Grosso, D. (2010). Hydrophobic, antireflective, self-cleaning, and antifogging sol–gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chemistry of Materials, 22(15), 4406–4413. doi:10.1021/cm100937e

    Article  Google Scholar 

  • Garnett, E., & Yang, P. (2010). Light trapping in silicon nanowire solar cells. Nano Letters, 10(3), 1082–1087. doi:10.1021/nl100161z

    Article  Google Scholar 

  • Gizem ToroÄŸlu LS (2014) Finite-Difference Time-Domain (FDTD) MATLAB Codes for First- and Second-Order EM Differential Equations. IEEE Antennas and Propagation Magazine, 56 (2).

    Google Scholar 

  • González-Ramírez, J. E., Fuentes, J., Hernández, L. C., & Hernández, L. (2009). Evaluation of the thickness in nanolayers using the transfer matrix method for modeling the spectral reflectivity. Physics Research International

    Google Scholar 

  • Hengameh Hanaei, F. R. B. A., Mohammadpour, E., & Kakooei, S. (2013). Optimization of carbon nano tubes synthesis using fluidized bed chemical vapor deposition: A statistical approach. Caspian Journal of Applied Sciences, 2(3), 46–55.

    Google Scholar 

  • Hyo Jin Gwon, Y. P., Moon, Cheon Woo, Nahm, Sahn, Yoon, Seok-Jin, Kim, Soo Young, & Jang, Ho Won. (2014). Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Research, 7(5), 670–678. doi:10.1007/s12274-014-0427-x

    Article  Google Scholar 

  • Jung, S., Kim, K.-Y., Lee, Y.-I., Youn, J.-H., Moon, H.-T., Jang, J., et al. (2011). Optical modeling and analysis of organic solar cells with coherent multilayers and Incoherent glass substrate using generalized transfer matrix method. Japanese Journal of Applied Physics, 50(12R), 122301.

    Article  Google Scholar 

  • Kamat, P. (2006). Carbon nanomaterials: Building blocks in energy conversion devices. The Electrochemical Society Interface

    Google Scholar 

  • Katsidis, C. C., & Siapkas, D. I. (2002). General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics, 41(19), 3978–3987.

    Article  Google Scholar 

  • Kosarian, A., & Jelodarian, P. (2011). Numerical evaluation and characterization of single junction solar cell based on thin-film a-Si: H/a-SiGe: H hetero-structure. In: Electrical Engineering (ICEE), 2011 19th Iranian Conference on, 2011. IEEE, pp 1–6.

    Google Scholar 

  • Lesina, A. C., Paternoster, G., Mattedi, F., Ferrario, L., Berini, P., Ramunno, L., et al. (2015a). Modeling and characterization of antireflection coatings with embedded silver nanoparticles for silicon solar cells. Plasmonics,. doi:10.1007/s11468-015-9957-7

    Google Scholar 

  • Lesina, A. C., Vaccari, A., Berini, P., & Ramunno, L. (2015b). On the convergence and accuracy of the FDTD method for nanoplasmonics. Optics Express, 23(8), 10481–10497. doi:10.1364/OE.23.010481

    Article  Google Scholar 

  • Li, X., He, J., & Liu, W. (2013a). Broadband anti-reflective and water-repellent coatings on glass substrates for self-cleaning photovoltaic cells. Materials Research Bulletin, 48(7), 2522–2528. doi:10.1016/j.materresbull.2013.03.017

    Article  Google Scholar 

  • Li, F., Li, Q., & Kim, H. (2013b). Spray deposition of electrospun TiO2 nanoparticles with self-cleaning and transparent properties onto glass. Applied Surface Science, 276, 390–396. doi:10.1016/j.apsusc.2013.03.103

    Article  Google Scholar 

  • Li, L., Li, Y., Gao, S., & Koshizaki, N. (2009). Ordered Co3O4 hierarchical nanorod arrays: Tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity. Journal of Materials Chemistry, 19(44), 8366. doi:10.1039/b914462e

    Article  Google Scholar 

  • Li, Y. Z. J., & Yang, B. (2010). Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today, 5, 117–127.

    Article  Google Scholar 

  • Liu, Z., Zhang, X., Murakami, T., & Fujishima, A. (2008). Sol–gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties. Solar Energy Materials and Solar Cells, 92(11), 1434–1438. doi:10.1016/j.solmat.2008.06.005

    Article  Google Scholar 

  • Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F., Ashari-Astani, N., et al. (2014). Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6(3), 242–247. doi:10.1038/nchem.1861

    Article  Google Scholar 

  • Philip, G., & Collins, P. A. (2000). Nanotubes FOR electronics. Scientific American, Inc.

    Google Scholar 

  • Popov, V. (2004). Carbon nanotubes: Properties and application. Materials Science and Engineering: R: Reports, 43(3), 61–102. doi:10.1016/j.mser.2003.10.001

    Article  Google Scholar 

  • Ralph Seitz, B. P. M., Axel, T., Andreas, S., Michael, M., Mickael P., Oliver, K., et al. (2012). Nanotechnology in the sectors of solar energy and energy storage.

    Google Scholar 

  • Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy and Environmental Science, 4(10), 3779. doi:10.1039/c1ee01297e

    Article  Google Scholar 

  • Sahouane, N., & Zerga, A. (2014). Optimization of antireflection multilayer for industrial crystalline silicon solar cells. Energy Procedia, 44, 118–125.

    Article  Google Scholar 

  • Saravanan, S., Dubey, R. S., & Kalainathan, S. (2015). Design and analysis of thin film based silicon solar cells for efficient light trapping. Advances in Optical Science and Engineering, 166, 129–134. doi:10.1007/978-81-322-2367-2_17

    Article  Google Scholar 

  • Seung Yong Son, Y. L., Won, Sungho, & Lee, Dong Hyun. (2008). High-quality multiwalled carbon nanotubes from catalytic decomposition of carboneous materials in gas-solid fluidized beds. Industrial and Engineering Chemistry, 47, 2166–2175.

    Article  Google Scholar 

  • Shi, E., Zhang, L., Li, Z., Li, P., Shang, Y., Jia, Y., et al. (2012). TiO(2)-coated carbon nanotube-silicon solar cells with efficiency of 15 %. Scientific reports, 2, 884. doi:10.1038/srep00884

    Google Scholar 

  • Sun, T. F. L., Gao, X., & Jiang, L. (2005). Bioinspired surfaces with special wettability. Accounts of Chemical Research, 38, 644–652.

    Article  Google Scholar 

  • The Finite-Difference Time-Domain Method (FDTD). (2012).

    Google Scholar 

  • Vaccari, A., Lesina, A. C., Cristoforetti, L., Chiappini, A., Crema, L., Calliari, L., et al. (2014). Light-opals interaction modeling by direct numerical solution of Maxwell’s equations. Optics Express, 22(22), 27739–27749. doi:10.1364/OE.22.027739

    Article  Google Scholar 

  • Verma, L. K., Sakhuja, M., Son, J., Danner, A. J., Yang, H., Zeng, H. C., et al. (2011). Self-cleaning and antireflective packaging glass for solar modules. Renewable Energy, 36(9), 2489–2493. doi:10.1016/j.renene.2011.02.017

    Article  Google Scholar 

  • Wan, D., Chen, H.-L., Tseng, T.-C., Fang, C.-Y., Lai, Y.-S., & Yeh, F.-Y. (2010). Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells. Advanced Functional Materials, 20(18), 3064–3075. doi:10.1002/adfm.201000678

    Article  Google Scholar 

  • Wei, F., Zhang, Q., Qian, W.-Z., Yu, H., Wang, Y., Luo, G.-H., et al. (2008). The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space–time analysis. Powder Technology, 183(1), 10–20. doi:10.1016/j.powtec.2007.11.025

    Article  Google Scholar 

  • Xiong, J., Das, S. N., Shin, B., Kar, J. P., Choi, J. H., & Myoung, J. M. (2010). Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. Journal of Colloid and Interface Science, 350(1), 344–347. doi:10.1016/j.jcis.2010.06.053

    Article  Google Scholar 

  • Yan, J., Uddin, M. J., Dickens, T. J., & Okoli, O. I. (2013). Carbon nanotubes (CNTs) enrich the solar cells. Solar Energy, 96, 239–252. doi:10.1016/j.solener.2013.07.027

    Article  Google Scholar 

  • Yang, Z., Zhu, D., Zhao, M., & Cao, M. (2004). The study of a nano-porous optical film with the finite difference time domain method. Journal of Optics A: Pure and Applied Optics, 6(6), 564.

    Article  Google Scholar 

  • Yao, L., & He, J. (2014). Recent progress in antireflection and self-cleaning technology—From surface engineering to functional surfaces. Progress in Materials Science, 61, 94–143. doi:10.1016/j.pmatsci.2013.12.003

    Article  Google Scholar 

  • Ye, L., Zhang, Y., Zhang, X., Hu, T., Ji, R., Ding, B., et al. (2013). Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Solar Energy Materials and Solar Cells, 111, 160–164. doi:10.1016/j.solmat.2012.12.037

    Article  Google Scholar 

  • Yongjin Wang, F. H., Kanamori, Y., Wu, T., & Hane, K. (2010) Large area, freestanding GaN nanocolumn membrane with bottom subwavelength nanostructure. Optic Express, 18(6).

    Google Scholar 

  • Zhan, F., Li, Z., Shen, X., He, H., & Zeng, J. (2014) Design multilayer antireflection coatings for terrestrial solar cells. The Scientific World Journal

    Google Scholar 

  • Zhang, J., & Yang, B. (2010). Patterning colloidal crystals and nanostructure arrays by soft lithography. Advanced Functional Materials, 20(20), 3411–3424. doi:10.1002/adfm.201000795

    Article  Google Scholar 

  • Zhu, W., Feng, X., Feng, L., & Jiang, L. (2006). UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film. Chemical Communications, 26, 2753. doi:10.1039/b603634a

    Article  Google Scholar 

  • Zhu, H., Wei, J., Wang, K., & Wu, D. (2009). Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials and Solar Cells, 93(9), 1461–1470. doi:10.1016/j.solmat.2009.04.006

    Article  Google Scholar 

  • Zou C. S., & Ta, M. (2014). Investigation of moth-eye antireflection coatings for photovoltaic cover glass using FDTD modeling method. IEEE, 1(4).

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial supports given by the Universiti Teknologi PETRONAS under a YAYASAN Universiti Teknologi PETRONAS (YUTP) grant No. 0153AA-A96.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengameh Hanaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Assadi, M.K., Hanaei, H. (2017). Transparent Carbon Nanotubes (CNTs) as Antireflection and Self-cleaning Solar Cell Coating. In: Korada, V., Hisham B Hamid, N. (eds) Engineering Applications of Nanotechnology. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-29761-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29761-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29759-0

  • Online ISBN: 978-3-319-29761-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics