Advertisement

A State-Input Estimation Approach for Force Identification on an Automotive Suspension Component

  • E. RisalitiEmail author
  • B. Cornelis
  • T. Tamarozzi
  • W. Desmet
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Input force evaluation is always a crucial step for the adequate design of any kind of mechanical system. Direct measurements of input forces typically involve devices that are expensive, intrusive or difficult to calibrate. This is also the case for Road Load Data Acquisition (RLDA) testing campaigns, where the loads due to the road excitations acting on a vehicle are acquired. During RLDA testing campaigns, expensive measurement wheels are commonly used. An appealing alternative procedure, which consists of the use of less expensive sensors in combination with a numerical model of the system, is investigated. In order to combine experimental and simulation data, a coupled state-input estimation approach is used in the proposed procedure. In this approach a finite element model of the system provides simulated data, while common accelerometers and strain gauges provide experimental data. A Kalman filter is then used in order to perform the estimation. This paper presents the derivation of the filter equations that are necessary for the envisioned approach. A numerical example is then performed where the system-under-investigation is an automotive suspension component.

Keywords

Input estimation Virtual Sensing Automotive Kalman filter Multiple force estimation 

Notes

Acknowledgements

The authors gratefully acknowledge the European Commission for its support of the Marie Sklodowska Curie program through the ITN ANTARES project (GA 606817).

References

  1. 1.
    Klinkov, M., Fritzen, C.-P.: An updated comparison of the force reconstruction methods. Key Eng. Mater. 347, 461–466 (2007)CrossRefGoogle Scholar
  2. 2.
    Uhl, T.: The inverse identification problem and its technical application. Arch. Appl. Mech. 77, 325–337 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Nordstrom, L.J.L., Nordberg, T.P.: A critical comparison of time domain load identification methods. In: International Conference on Motion and Vibration Control August (2002)Google Scholar
  4. 4.
    Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34 (4), 561–580 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Steltzner, A.D., Kammer, D.C.: Input force estimation using an inverse structural filter. J. Vib. Acoust. 123 (4), 524–532 (2001)CrossRefGoogle Scholar
  6. 6.
    Parloo, E., Verboven, P., Guillaume, P., Van Overmeire, M.: Force identification by means of in-operational modal models. J. Sound Vib. 262 (1), 161–173 (2003)CrossRefGoogle Scholar
  7. 7.
    Blau, M.: Inverse force synthesis: state of the art and future research. In: InterNoise 2000 International Congress and Exhibition on Noise Control Engineering (August 2000)Google Scholar
  8. 8.
    Aucejo, M.: Structural source identification using a generalized Tikhonov regularization. J. Sound Vib. 333 (22), 5693–5707 (2014)CrossRefGoogle Scholar
  9. 9.
    Rezayat, A., El-Kafafy, M., Maes, K., Lombaert, G., Vanlanduit, S., Guillaume, P.: Estimation of localized dynamic loads by means of sparse optimization. In: (IOMAC’15) 6th International Operational Modal Analysis Conference, Spain (2015)Google Scholar
  10. 10.
    Trujillo, D.M., Busby, H.R.: Practical Inverse Engineering. CRC Press, London (1997)zbMATHGoogle Scholar
  11. 11.
    Uhl, T.: Identification of loads in mechanical structures-helicopter case study. Comput. Assist. Mech. Eng. Sci. 9 (1), 151–160 (2002)zbMATHGoogle Scholar
  12. 12.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82 (1), 35–45 (1960)CrossRefGoogle Scholar
  13. 13.
    Ma, C.-K., Tuan, P.-C., Lin, D.-C., Liu, C.-S.: A study of an inverse method for estimation of impulsive loads. Int. J. Syst. Sci. 29 (6), 663–672 (1998)CrossRefGoogle Scholar
  14. 14.
    Gillijns, G., De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43, 111–116 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hwang, J.-S., Kareem, A., Kim, W.-J.: Estimation of modal loads using structural response. J. Sound Vib. 326 (3–5), 522–539 (2009)CrossRefGoogle Scholar
  16. 16.
    Friedland, B.: Treatment of bias in recursive filtering. IEEE Trans. Autom. Control 14 (4), 359–367 (1969)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lourens, E., Reynders, E., De Roeck, G., Degrande, G., Lombaert, G.: An augmented Kalman filter for force identification in structural dynamics. Mech. Syst. Signal Process. 27, 446–460 (2012)CrossRefGoogle Scholar
  18. 18.
    Naets, F., Cuadrado, J., Desmet, W.: Stable force identification in structural dynamics using Kalman filtering and dummy-measurements. Mech. Syst. Signal Process. 50–51, 235–248 (2015)CrossRefGoogle Scholar
  19. 19.
    Naets, F., Croes, J., Desmet, W.: An online coupled state/input/parameter estimation approach for structural dynamics. Comput. Methods Appl. Mech. Eng. 283, 1167–1188 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Simo, D.: Optimal State Estimation: Kalman, \(\text{H}_{\infty }\) and Nonlinear Approaches. Wiley, New York (2006)CrossRefGoogle Scholar
  21. 21.
    Van Loan, C.F.: Computing integrals involving the matrix exponential. IEEE Trans. Autom. Control 23 (3), 395–404 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Butterworth Heinemann, Oxford (2000)zbMATHGoogle Scholar
  23. 23.
    Besselink, B., Tabak, U., Lutowska, A., van de Wouw, N., Nijmeijer, H., Rixen, D. J., Hochstenbach, M.E., Schilders, W.H.A.: A comparison of model reduction techniques from structural dynamics, numerical mathematics and system and control. J. Sound Vib. 332, 4403–4422 (2013)CrossRefGoogle Scholar
  24. 24.
    Craig, R.R., Kurdila, A.J.: Fundamentals of Structural Dynamics. Wiley, New York (2006)zbMATHGoogle Scholar
  25. 25.
    Ghosh, B.K., Rosenthal, J.: A generalized Popov-Belevitch-Hautus test of observability. IEEE Trans. Autom. Control 40 (1), 176–180 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • E. Risaliti
    • 1
    • 2
    Email author
  • B. Cornelis
    • 1
  • T. Tamarozzi
    • 1
    • 2
  • W. Desmet
    • 2
  1. 1.Siemens Industry Software NVLeuvenBelgium
  2. 2.Division PMAKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations