Advertisement

Modeling and Experimental Test Study of a Multilayer Piezoelectric Actuator

  • ZhongZhe DongEmail author
  • Cassio T. Faria
  • Wim Desmet
  • Martin Hromcik
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

In order to increase the performance of piezoelectric actuators/sensors, a common practice is to stack thin layers of active materials with electrodes in between such that higher electric fields are achieved inside the piezoelectric elements. Modeling this composite material requires either a detailed description of the layers components or the use of equivalent properties. The work presented in this paper achieved a comparative study between these two modeling approaches. The predictions are verified against experimental result. It shows that the both modeling approaches obtain similar results in modal analysis, and in each numerical model, a consistent natural frequency mismatch was found to compare with the experimental modal analysis. A Frequency Response Function (FRF) comparison between experimental measurement and equivalent properties modeling approach also carried out to check its dynamic prediction capability. A simple model updating has been carried out at the end; the updated numerical models exhibit a good consistency with experimental measurement.

Keywords

Piezoelectric Multilayer actuator Equivalent properties FEM models Experimental modal analysis 

Notes

Acknowledgment

The authors would like to thank the European Commission via the EU funded Marie Curie ITN for the financial support to project called Application of distributed control on smart structures(ARRAYCON), grant number 605087.

References

  1. 1.
    de Abreu, G.L.C.M., Ribeiro, J.F., Steffen Jr., V.: Finite element modeling of a plate with localized piezoelectric sensors and actuators. J. Braz. Soc. Mech. Sci. Eng. XXVI(2), 117–128 (2004)CrossRefGoogle Scholar
  2. 2.
    Hariri, H., Bernard, Y., Razek, A.: Mod´elisation par ´el´ements finis d’un syst`eme asym´etrique de type poutre avec des patchs pi´ezo´electriques. E´lectrotechnique du Futur 14&15 (2011)Google Scholar
  3. 3.
    Hariri, H., Bernard, Y., Razek, A.: A two dimensions modeling of non-collocated piezoelectric patches bonded on thin structure. Curved Layer. Structures 2, 15–27 (2014)Google Scholar
  4. 4.
    de Marqui Junoir, C., Erturk, A., Inman, D.J.: An electromechanical finite element model for piezoelectric energy harvester plates. J. Sound Vib. 327, 9–25 (2009)CrossRefGoogle Scholar
  5. 5.
    Piefort, V., Loix, N., Preumont, A.: Modeling of piezolaminated composite shells for vibration control. In: ESA Conference on Spacecraft Structures, Materials and Mechanical Testing, 4–6 November 1998. Brunschweig, Germany (1998)Google Scholar
  6. 6.
    Wang, S.Y.: A finite element model for the static and dynamic analysis of a piezoelectric bimorph. Int. J. Solids Struct. 41, 4075–4096 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chung, S.H., Fung, E.H.K.: A nonlinear finite element model of a piezoelectric tube actuator with hysteresis and creep. J Smart Mater. Struct. 19, 045028 (2010)CrossRefGoogle Scholar
  8. 8.
    Marinkovic, D., Koppe, H., Gabbert, U.: Aspects of modeling peizoelectric active thin-walled structures. J. Intell. Mater. Syst. Struct. 20(15), 1835–1844 (2009)CrossRefGoogle Scholar
  9. 9.
    Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York, ISBN: 978-0-470-68254-8 (2011)Google Scholar
  10. 10.
    Ballas, R.G.: Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration. Springer-Verlag, Berlin (2007)Google Scholar
  11. 11.
    Brissaud, M., Ledren, S., Gonnard, P.: Modelling of a cantilever non-symmetric piezoelectric bimorph. J. Micromech. Microeng. 13, 832–844 (2003)CrossRefGoogle Scholar
  12. 12.
    Wang, Q.M., Cross, L.E.: Constitutive equations of symmetrical triple layer piezoelectric benders. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1343–1351 (1999)CrossRefGoogle Scholar
  13. 13.
    Tadmor, E.B., Ksa, G.: Electromechanical coupling correction for piezoelectric layered beams. IEEE J. Microelectromech. Sys. 12(6), 899–906 (2003)CrossRefGoogle Scholar
  14. 14.
    Wang, Q.M., Du, X.H., Xu, B., Cross, L.E.: Electromechanical coupling and output efficiency of piezoelectric bending actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(3), 638–646 (1999)CrossRefGoogle Scholar
  15. 15.
    PI piezoelectric actuators: Piezoelectric Actuator, p-45, www.piceramic.com, Physik Instrumente (PI) GmbH & Co. KG
  16. 16.
    Vaccarone, R., Moller, F.: Cryogenic behavior of piezoelectric bimorph actuators. Adv. Cryog. Eng. (Mater.) 46, 277–282 (2000)Google Scholar
  17. 17.
    Seitz, H., Heinzl, J.: Modelling of a microfluideic device with piezoelectric actuators. J. Micromech. Microeng. 14, 1140–1147 (2004)CrossRefGoogle Scholar
  18. 18.
    Leo, D.J.: Engineering Analysis of Smart Material System. Wiley, New York (2007)CrossRefGoogle Scholar
  19. 19.
    Zhu, M., Leighton, G.: Dimensional reduction study of piezoelectric ceramics constitutive equations from 3-D to 2D and 1-D. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(11), 2377–2383 (2008)CrossRefGoogle Scholar
  20. 20.
    Fotsch, D., Ewins, D.J.: Application of MAC in the frequency domain. 18th International Modal Analysis Conference San Antonio, United States, pp. 1225–1231 (2000)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • ZhongZhe Dong
    • 1
    • 2
    • 3
    Email author
  • Cassio T. Faria
    • 1
  • Wim Desmet
    • 2
  • Martin Hromcik
    • 3
  1. 1.Engineering Service DivisionSiemens Industry Software NVLeuvenBelgium
  2. 2.Department of Mechanical EngineeringKatholieke University LuevenHeverlee, LeuvenBelgium
  3. 3.Faculty of Electrical EngineeringCzech Technical University in PraguePrague 2Czech Republic

Personalised recommendations