Interval Finite Element Approach for Modal Analysis of Linear Elastic Structures Under Uncertainty

  • Naijia XiaoEmail author
  • Francesco Fedele
  • Rafi Muhanna
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


We present a new Interval Finite Element (IFEM) approach for modal analysis of linear elastic structures with uncertain geometric and material properties. Uncertain parameters are modeled as intervals. Guaranteed interval lower and upper bounds for natural frequencies and modal shapes are attained using a new decomposition strategy of the IFEM matrices that drastically reduces overestimation due to interval dependency. The associated interval generalized eigenvalue problem is solved efficiently by way of a new variant of the iterative enclosure method. Several numerical examples show the accuracy and efficiency of the proposed method.


Interval Finite element method Modal analysis Iterative enclosure method Matrix decomposition Generalized eigenvalue problem 


  1. 1.
    Ellingwood, B.R., Kinali, K.: Quantifying and communicating uncertainty in seismic risk assessment. Struct. Saf. 31, 179–87 (2009)CrossRefGoogle Scholar
  2. 2.
    Lutes, L.D., Sarkani, S.: Analysis of stochastic processes. In: Lutes, L.D., Sarkani, S. (eds.) Random Vibrations: Analysis of Structural and Mechanical Systems. Butterworth-Heinemann, Burlington (2004)Google Scholar
  3. 3.
    Wan, H., Mao, Z., Todd, M.D., Ren, W.: Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a Gaussian process metamodel. Eng. Struct. 75, 577–589 (2014)CrossRefGoogle Scholar
  4. 4.
    Moens, D., Hanss, M.: Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances. Finite Elem. Anal. Des. 47, 4–16 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhang, M.Q., Beer, M., Quek, S.T., Choo, Y.S.: Comparison of uncertainty models in reliability analysis of offshore structures under marine corrosion. Struct. Saf. 32, 425–432 (2010)CrossRefGoogle Scholar
  6. 6.
    Adhikari, S., Khodaparast, H.H.: A spectral approach for fuzzy uncertainty propagation in finite element analysis. Fuzzy Set. Syst. 243, 1–24 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Klir, G.J., Wierman, M.J.: Uncertainty-Based Information - Elements of Generalized Information Theory. Physica-Verlag, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1968)zbMATHGoogle Scholar
  10. 10.
    Corliss, G., Foley, C., Kearfott, R.B.: Formulation for reliable analysis of structural frames. Reliab. Comput. 13(2), 125–147 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Impollonia, N., Muscolino, G.: Interval analysis of structures with uncertain-but-bounded axial stiffness. Comput. Methods Appl. Mech. Eng. 220(21–22), 1945–1962 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Muhanna, R.L., Zhang, H., Mullen, R.L.: Combined axial and bending stiffness in interval finite-element methods. J. Struct. Eng. 133(12), 1700–1709 (2007)CrossRefGoogle Scholar
  13. 13.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computation. Academic, San Diego (1983)zbMATHGoogle Scholar
  14. 14.
    Kulisch, U.W., Miranker, W.L.: Computer Arithmetic in Theory and Practice. Academic, New York (1981)zbMATHGoogle Scholar
  15. 15.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, New York (1990)zbMATHGoogle Scholar
  17. 17.
    Muhanna, R.L., Mullen, R.L.: Uncertainty in mechanics problems – interval-based approach. J. Eng. Mech. ASCE 127(6), 557–566 (2001)CrossRefGoogle Scholar
  18. 18.
    Muhanna, R.L., Zhang, H.: Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics. Reliab. Comput. 13, 173–194 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pownuk, A. Calculation of the extreme values of displacements in truss structures with interval parameters. Available online at: (2004)
  20. 20.
    Yang, Y., Cai, Z., Liu, Y.: Interval analysis of frequency response functions of structures with uncertain parameters. Mech. Res. Commun. 47, 24–31 (2013)CrossRefGoogle Scholar
  21. 21.
    Leng, H.: Real eigenvalue bounds of standard and generalized real interval eigenvalue problems. Appl. Math. Comput. 232, 164–171 (2014)MathSciNetGoogle Scholar
  22. 22.
    Sofi, A., Muscolino, G., Elishakoff, I.: Natural frequencies of structures with interval parameters. J. Sound Vib. 347, 79–95 (2015)CrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, C., Gao, W., Song, C., Zhang, N.: Stochastic interval analysis of natural frequency and mode shape of structures with uncertainties. J.Sound Vib. 333, 2483–2503 (2014)Google Scholar
  24. 24.
    Xiao, N., Muhanna, R. L., Fedele, F., Mullen, R. L.: Interval finite elements for uncertainty in frame structures. 11th International Conference on Structural Safety & Reliability, New York, 16–20 June 2013Google Scholar
  25. 25.
    Rama Rao, M.V., Mullen, R.L., Muhanna, R.L.: A new interval finite element formulation with the same accuracy in primary and derived variables. Int. J. Reliab. Saf. 5(3/4), 336–367 (2011)CrossRefGoogle Scholar
  26. 26.
    Neumaier, A., Pownuk, A.: Linear systems with large uncertainties, with applications to truss structures. Reliab. Comput. 13(2), 149–172 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999).
  28. 28.
    American Institute of Steel Construction, Inc.: Steel construction manual, 13th edn. ISBN 1-56424-055-X (2005)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  1. 1.School of Civil and Environmental Engineering, Georgia Institute of TechnologyAtlantaUSA
  2. 2.School of Civil and Environmental Engineering and School of Electrical and Computer Engineering, Georgia Institute of Technology, Technology Square Research Building (TSRB)AtlantaUSA
  3. 3.School of Civil and Environmental Engineering, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations