Skip to main content

Nanoporous Metals for Supercapacitor Applications

  • Chapter
  • First Online:
Nanoporous Metals for Advanced Energy Technologies

Abstract

Supercapacitors have received great attentions among various energy storage devices both in academic and practical applications. They show high power densities and can be fully discharged or charged in seconds which are suitable for large instantaneous current densities. The performance is highly dependent on the specific surface area and conductivity of the electrode materials. Nanoporous metals-based electrode materials with a large internal surface area and excellent conductivity have been widely investigated in supercapacitors. In this chapter, we summarize the research progress of pure nanoporous metals, pseudo-capacitive materials (metal oxides, conductive polymer)/nanoporous metals composites in supercapacitors. By introducing nanoporous structures into electrode materials, the 3D bicontinuous porous structure and the high conductivity of the nanoporous metal-based framework benefit the electron--proton transport and electrolyte permeation, giving rise to ultrahigh specific capacitance. The pseudo-capacitive materials can also be deposited on the nanoporous metals by surface oxidize/oxyhydroxide. The surface oxyhydroxide and the internal nanoporous metal framework form a homogeneous and stable hybrid structure. The mixed-valence oxyhydroxide composite has been prepared by dealloying ternary Ni–Cu–Mn alloy. This hybrid composite electrode exhibits an ultrahigh specific capacitance of 627 F/cm3 and a very large operating potential window of 1.8 V in an aqueous electrolyte. The MnO2/NPG composite electrode gives a high specific capacitance of 601 F/g even based on the total mass of gold and MnO2. The conductive polymer/NPG composites have been developed into all-solid-state supercapacitor electrode and gives excellent electrochemical performance. Asymmetric capacitors based on nanoporous metal electrodes have also been fabricated to further improve the performance of supercapacitors. All of the related works have been reviewed in this chapter. The summary part of this chapter gives a brief prospective and the roadmap in the field of nanoporous metals-based electrode materials about toward a practical supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269

    Article  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  Google Scholar 

  3. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sour 91(1):37–50

    Article  Google Scholar 

  4. Miller JR, Simon P (2008) Materials science—electrochemical capacitors for energy management. Science 321(5889):651–652

    Article  Google Scholar 

  5. Becker HL (1957) Low voltage electrolytic capacitor. United States Patents, 2,800,616[P]. 1957-07-23

    Google Scholar 

  6. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498

    Article  Google Scholar 

  7. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376

    Article  Google Scholar 

  8. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC et al (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy 34(11):4889–4899

    Article  Google Scholar 

  9. Wang K, Wu HP, Meng YN, Wei ZX (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1):14–31

    Article  Google Scholar 

  10. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y et al (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987–994

    Article  Google Scholar 

  11. Yu GH, Xie X, Pan LJ, Bao ZN, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234

    Article  Google Scholar 

  12. Trasatti S, Buzzanca P (1971) Ruthenium oxide: a new interesting electrode material, solid state structure and electrochemical behavior. J Electroanal Chem 29:1–5

    Article  Google Scholar 

  13. Conway BE (1991) Transition from supercapacitor to battery behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539–1548

    Article  Google Scholar 

  14. Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16(16):3184–3190

    Article  Google Scholar 

  15. Wang L, Ji HM, Wang SS, Kong LJ, Jiang XF, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5(9):3793–3799

    Article  Google Scholar 

  16. Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2008) Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem Commun 35:4213–4215

    Article  Google Scholar 

  17. Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223

    Article  Google Scholar 

  18. Lang XY, Hirata A, Fujita T, Chen MW (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236

    Article  Google Scholar 

  19. Meng FH, Ding Y (2011) Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv Mater 23(35):4098–4102

    Google Scholar 

  20. Hu LB, Pasta M, La Mantia F, Cui LF, Jeong S, Deshazer HD et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714

    Article  Google Scholar 

  21. Lang XY, Yuan HT, Iwasa Y, Chen MW (2011) Three-dimensional nanoporous gold for electrochemical supercapacitors. Scripta Mater 64(9):923–926

    Article  Google Scholar 

  22. Kobayashi N, Ogata H, Park KC, Takeuchi K, Endo M (2013) Investigation on capacitive behaviors of porous Ni electrodes for electric double layer capacitors. Electrochim Acta 90:408–415

    Article  Google Scholar 

  23. Kobayashi N, Sakumoto T, Mori S, Ogata H, Park KC, Takeuchi K et al (2013) Investigation on capacitive behaviors of porous Ni electrodes in ionic liquids. Electrochim Acta 105:455–461

    Article  Google Scholar 

  24. Chen PC, Hsieh SJ, Zou J, Chen CC (2014) Selectively dealloyed Ti/TiO2 network nanostructures for supercapacitor application. Mater Lett 133:175–178

    Article  Google Scholar 

  25. Kang JL, Hirata A, Qiu HJ, Chen LY, Ge XB, Fujita T et al (2014) Self-grown Oxy-Hydroxide@ nanoporous metal electrode for high-performance supercapacitors. Adv Mater 26(2):269–272

    Article  Google Scholar 

  26. Kang JL, Hirata A, Chen LY, Zhu SL, Fujita T, Chen MW (2015) Extraordinary supercapacitor performance of a multicomponent and mixed-valence oxyhydroxide. Angew Chem Int Ed 54(28):8100–8104

    Article  Google Scholar 

  27. Chen LY, Kang JL, Hou Y, Liu P, Fujita T, Hirata A et al (2013) High-energy-density nonaqueous MnO2@nanoporous gold based supercapacitors. J Mater Chem A 1(32):9202–9207

    Article  Google Scholar 

  28. Kang JL, Chen LY, Hou Y, Li C, Fujita T, Lang XY et al (2013) Electroplated thick manganese oxide films with ultrahigh capacitance. Adv Energy Mater 3(7):857–863

    Article  Google Scholar 

  29. Wang ZF, Liu JY, Qin CL, Liu L, Zhao WM, Inoue A (2015) Fabrication and new electrochemical properties of nanoporous Cu by dealloying amorphous Cu–Hf–Al–alloys. Intermetallics 56:48–55

    Article  Google Scholar 

  30. Zeng ZG, Zhou HJ, Long X, Guo EJ, Wang XH (2015) Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance. J Alloy Compd 632:376–385

    Article  Google Scholar 

  31. Zeng ZG, Long X, Zhou HJ, Guo EJ, Wang XH, Hu ZY (2015) On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode. Electrochim Acta 163:107–115

    Article  Google Scholar 

  32. Han JH, Lin YC, Chen LY, Tsai YC, Ito Y, Guo XW et al (2015) On-chip micro-pseudocapacitors for ultrahigh energy and power delivery. Adv Sci 2:1500067

    Article  Google Scholar 

  33. Lu Q, Chen JG, Xiao JQ (2013) Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed 52:1882–1889

    Article  Google Scholar 

  34. Chen LY, Hou Y, Kang JL, Hirata A, Fujita T, Chen MW (2013) Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv Energy Mater 3(7):851–856

    Article  Google Scholar 

  35. Lang XY, Hirata A, Fujita T, Chen MW (2014) Three-dimensional hierarchical nanoporosity for ultrahigh power and excellent cyclability of electrochemical pseudocapacitors. Adv Energy Mater 4(10):1301809

    Article  Google Scholar 

  36. Xu JL, Wang CD, Liu JB, Xu S, Zhang WJ, Lu Y (2015) Facile fabrication of a novel nanoporous Au/AgO composite for electrochemical double-layer capacitor. RSC Adv 5(49):38995–39002

    Article  Google Scholar 

  37. Hou Y, Chen LY, Zhang L, Kang JL, Fujita T, Jiang JH et al (2013) Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors. J Power Sour 225:304–310

    Article  Google Scholar 

  38. Lang XY, Zhang L, Fujita T, Ding Y, Chen MW (2012) Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. J Power Sour 197:325–329

    Article  Google Scholar 

  39. Chen LY, Hou Y, Kang JL, Hirata A, Chen MW (2014) Asymmetric metal oxide pseudocapacitors advanced by three-dimensional nanoporous metal electrodes. J Mater Chem A 2(22):8448–8455

    Article  Google Scholar 

  40. Hou Y, Chen LY, Liu P, Kang JL, Fujita T, Chen MW (2014) Nanoporous metal based flexible asymmetric pseudocapacitors. J Mater Chem A 2(28):10910–10916

    Article  Google Scholar 

  41. Ding Y, Erlebacher J (2003) Nanoporous metals with controlled multimodal pore size distribution. J Am Chem Soc 125(26):7772–7773

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ding, Y., Zhang, Z. (2016). Nanoporous Metals for Supercapacitor Applications. In: Nanoporous Metals for Advanced Energy Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-29749-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29749-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29747-7

  • Online ISBN: 978-3-319-29749-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics