Skip to main content

Electrical Conductivity of Carbon Nanotubes: Modeling and Characterization

  • Chapter
  • First Online:

Abstract

A short introduction to the electronics properties of carbon nanotubes (CNTs) is given and applied to the analysis of electric conductivity of isolated and bundled CNTs, either single-wall or multi-wall. The model of the electrical conductivity is presented in a wide frequency range, from DC to visible light. In the low-frequency range (up to the THz range), only intraband transitions are considered, whereas for higher frequencies also interband transitions are taken into account. The conductivity model is consistent with the classical Drude model and is able to describe novel phenomena associated with the signal propagation along CNTs, such as plasmon resonances of slow surface waves or intershell tunneling effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Saito R, Dresselhaus G, Dresselhaus MS (2004) Physical properties of carbon nanotubes. Imperial College Press, Singapore

    MATH  Google Scholar 

  2. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes. Wiley-VCH, Weinheim

    Google Scholar 

  3. Anantram MP, Lonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69:507

    Article  Google Scholar 

  4. Ilyinsky AS, Slepyan GYa, Slepyan AYa (1993) Propagation, scattering and dissipation of electromagnetic waves. Peter Peregrinus, London

    Google Scholar 

  5. Hanson GW (2005) Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans Antennas Propag 53:3426–3435

    Article  Google Scholar 

  6. Burke PJ, Li S, Yu Z (2006) Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans Nanotechnol 5:314–334

    Article  Google Scholar 

  7. Slepyan GY, Shuba MV, Maksimenko SA, Lakhtakia A (2006) Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas. Phys Rev B 73:195416

    Article  Google Scholar 

  8. Maffucci A, Miano G, Villone F (2008) Performance comparison between metallic carbon nanotube and copper nano-interconnects. IEEE Trans Adv Packag 31(4):692–699

    Article  MATH  Google Scholar 

  9. Morris JE (2008) Nanopackaging: nanotechnologies and electronics packaging. Springer, New York

    Book  Google Scholar 

  10. Close GF, Yasuda S, Paul B, Fujita S, Philip Wong H-S (2009) A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. Nano Lett 8(2):706–709

    Article  Google Scholar 

  11. Shuba MV, Slepyan GY, Maksimenko SA, Thomsen C, Lakhtakia A (2009) Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys Rev B 79(15):155403–155403

    Article  Google Scholar 

  12. Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans Electron Devices 56(9):1799–1821

    Article  Google Scholar 

  13. Ding L, Liang S, Pei T, Zhang Z, Wang S, Zhou W, Liu J, Peng L-M (2012) Carbon nanotube based ultra-low voltage integrated circuits: scaling down to 0.4 V. Appl Phys Lett 100(26):263116

    Google Scholar 

  14. Chiariello AG, Maffucci A, Miano G (2013) Circuit models of carbon-based interconnects for nanopackaging. IEEE Trans Compon Packag Manuf 3(11):1926–1937

    Article  Google Scholar 

  15. Valitova I, Amato M, Mahvash F, Cantele G, Maffucci A, Santato C, Martel R, Cicoira F (2013) Carbon nanotube electrodes in organic transistors. Nanoscale 5:4638–4646

    Article  Google Scholar 

  16. Hartmann RR, Kono J, Portnoi ME (2014) Terahertz science and technology of carbon nanomaterials. Nanotechnology 25:322001

    Article  Google Scholar 

  17. Miano G, Forestiere C, Maffucci A, Maksimenko SA, Slepyan GY (2011) Signal propagation in single wall carbon nanotubes of arbitrary chirality. IEEE Trans Nanotechnol 10:135–149

    Article  Google Scholar 

  18. Slepyan GYa, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B 60:17136–17149

    Google Scholar 

  19. Bass FG, Bulgakov AA (1997) Kinetic and electrodynamic phenomena in classical and quantum semiconductor superlattices. Nova, New York

    Google Scholar 

  20. Miyamoto Y, Louie SG, Cohen ML (1996) Chiral conductivities of nanotubes. Phys Rev Lett 76:2121

    Article  Google Scholar 

  21. Yevtushenko OM, Slepyan GYa, Maksimenko SA, Lakhtakia A, Romanov DA (1997) Nonlinear electron transport effects in a chiral carbon nanotube. Phys Rev Lett 79:1102–1105

    Google Scholar 

  22. Slepyan GYa, Maksimenko SA, Lakhtakia A, Yevtushenko OM, Gusakov AV (1998) Electronic and electromagnetic properties of nanotubes. Phys Rev B 57:9485–9497

    Google Scholar 

  23. Forestiere C, Maffucci A, Miano G (2011) On the evaluation of the number of conducting channels in multiwall carbon nanotubes. IEEE Trans Nanotechnol 10(6):1221–1223

    Article  Google Scholar 

  24. Lundstrom M (2000) Fundamentals of carrier transport. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Pop E, Mann DA, Goodson KE, Dai HJ (2007) Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J Appl Phys 101(9):093710

    Google Scholar 

  26. Slepyan GY, Shuba MV, Maksimenko SA, Thomsen C, Lakhtakia A (2010) Terahertz conductivity peak in composite materials containing carbon nanotubes: theory and interpretation of experiment. Phys Rev B 81:205423

    Article  Google Scholar 

  27. Shuba MV, Paddubskaya AG, Plyushch AO, Kuzhir PP, Slepyan GY, Maksimenko SA, Ksenevich VK, Buka P, Seliuta D, Kasalynas I, Macutkevic J, Valusis G, Thomsen C, Lakhtakia A (2012) Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Phys Rev B 85:165435

    Article  Google Scholar 

  28. Bommeli F, Degiorgi L, Wachter P, Bacsa WS, De Heer WA, Forro L (1996) Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes. Solid State Commun 99:513–517

    Article  Google Scholar 

  29. Ugawa A, Rinzler AG (1999) Far-infrared gaps in single-wall carbon nanotubes. Phys Rev B 60, R11605

    Article  Google Scholar 

  30. Itkis ME, Niyogi S, Meng ME, Hamon MA, Hu H, Haddon RC (2002) Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes. Nano Lett 2:155–159

    Article  Google Scholar 

  31. Shyu FL, Lin MF (2002) Electronic and optical properties of narrow-gap carbon nanotubes. J Phys Soc Jpn 71:1820–1823

    Article  Google Scholar 

  32. Jeon T-I, Kim K-J, Kang C, Oh S-J, Son J-H, An KH, Bae DJ, Lee YH (2002) Terahertz conductivity of anisotropic single walled carbon nanotube films. Appl Phys Lett 80:3403

    Article  Google Scholar 

  33. Borondics F, Kamaras K, Nikolou M, Tanner DB, Chen ZH, Rinzler AG (2006) Charge dynamics in transparent single-walled carbon nanotube films from optical transmission measurements. Phys Rev B 74:045431

    Article  Google Scholar 

  34. Kampfrath T, von Volkmann K, Aguirre CM, Desjardins P, Martel R, Krenz M, Frischkorn C, Wolf M, Perfetti L (2008) Mechanism of the far-infrared absorption of carbon-nanotube films. Phys Rev Lett 101:267403

    Article  Google Scholar 

  35. Akima N, Iwasa Y, Brown S, Barbour AM, Cao J, Musfeldt JL, Matsui H, Toyota N, Shiraishi M, Shimoda H, Zhou O (2006) Strong anisotropy in the far-infrared absorption spectra of stretch-aligned, single-walled carbon nanotubes. Adv Mater 18:1166–1169

    Article  Google Scholar 

  36. Shuba MV, Paddubskaya AG, Kuzhir PP, Maksimenko SA, Ksenevich VK, Niaura G, Seliuta D, Kasalynas I, Valusis G (2012) Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids. Nanotechnology 23:495714

    Article  Google Scholar 

  37. Zhang Q, Hároz EH, Jin Z, Ren L, Wang X, Arvidson RS, Lüttge A, Kono J (2013) Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Lett 13:5991–5996

    Article  Google Scholar 

  38. Nemilentsau AM, Shuba MV, Slepyan GYa, Kuzhir PP, Maksimenko SA, D’yachkov PN, Lakhtakia A (2010) Substitutional doping of carbon nanotubes to control their electromagnetic characteristics. Phys Rev B 82:235424

    Google Scholar 

  39. Shuba MV, Paddubskaya AG, Kuzhir PP, Slepyan GYa, Seliuta D, Kašalynas I, Valušis G, Lakhtakia A (2012) Effects of inclusion dimensions and p-type doping in the terahertz spectra of composite materials containing bundles of single-wall carbon nanotubes. J Nanophotonics 6:061707

    Google Scholar 

  40. Morimoto T, Joung S-K, Saito T, Futaba DN, Hata K, Okazaki T (2014) Length-dependent plasmon resonance in single-walled carbon nanotubes. ACS Nano 8:9897–9904

    Article  Google Scholar 

  41. ITRS (2013) International Technology Roadmap for Semiconductors. http://public.itrs.net

  42. Steinhögl W et al (2005) Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J Appl Phys 97:023706

    Article  Google Scholar 

  43. Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans Electron Devices 55(10):2574–2582

    Article  Google Scholar 

  44. Chiariello AG, Maffucci A, Miano G (2012) Electrical modeling of carbon nanotube vias. IEEE Trans Electromagn Compat 54(1):158–166

    Article  Google Scholar 

  45. Wang T, Chen S, Jiang D, Fu Y, Jeppson K, Ye L, Liu J (2012) Through-silicon vias filled with densified and transferred carbon nanotube forests. IEEE Electron Device Lett 33(3):420–422

    Article  Google Scholar 

  46. Maksimenko SA, Slepyan G Ya (2002) Slepyan: electrodynamics of carbon nanotubes. J Commun Technol Electron 47:235–252

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of European Commission, under Projects FP7-612285 CANTOR and FP7-318617 FAEMCAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Maffucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maffucci, A., Maksimenko, S.A., Miano, G., Slepyan, G.Y. (2017). Electrical Conductivity of Carbon Nanotubes: Modeling and Characterization. In: Todri-Sanial, A., Dijon, J., Maffucci, A. (eds) Carbon Nanotubes for Interconnects. Springer, Cham. https://doi.org/10.1007/978-3-319-29746-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29746-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29744-6

  • Online ISBN: 978-3-319-29746-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics