Skip to main content

Overview of Carbon Nanotube Processing Methods

  • Chapter
  • First Online:
Carbon Nanotubes for Interconnects
  • 1734 Accesses

Abstract

On February 16, in year 2000, the first patent application was filed that proposed to use carbon nanotubes (CNTs) instead of metals as vertical interconnects in advanced microelectronic interconnects on semiconductor chips [1]. This patent, which has been cited in over 150 following patent applications as prior art, emphasizes that CNTs would be especially useful in vertical interconnects (vias). The quasi-ballistic current transport in CNTs would allow very efficient low resistance interconnects which can mitigate the observed reliability issues in advanced semiconductor interconnects [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engelhardt M, Hönlein W, Kreupl F (2000) Electronic component comprising an electrically conductive connection consisting of carbon nanotubes and a method for producing the same. US Patent 7,321,097 B2, 16 Feb 2000

    Google Scholar 

  2. Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64(1):399–408

    Article  Google Scholar 

  3. Joselevich E, Dai H, Liu J, Hata K, Windle AH (2008) Carbon nanotube synthesis and organization. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes. Springer, Berlin, Heidelberg, pp 101–165

    Google Scholar 

  4. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758

    Article  Google Scholar 

  5. Liu H, Takagi D, Chiashi S, Homma Y (2010) The growth of single-walled carbon nanotubes on a silica substrate without using a metal catalyst. Carbon 48(1):114–122

    Article  Google Scholar 

  6. Wang H, Yuan Y, Wei L, Goh K, Yu D, Chen Y (2015) Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 81:1–19

    Article  Google Scholar 

  7. Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973):426–429

    Article  Google Scholar 

  8. Zhang Q, Huang JQ, Zhao MQ, Qian WZ, Wei F (2011) Carbon nanotube mass production: principles and processes. ChemSusChem 4(7):864–889

    Article  Google Scholar 

  9. Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN, Hata K (2013) The infinite possible growth ambients that support single-wall carbon nanotube forest growth. Sci Rep 3

    Google Scholar 

  10. Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewaparakrama K, Kim SM, Zakharov D, Stach EA, Sumanasekera GU (2009) Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326(5949):116–120

    Article  Google Scholar 

  11. Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie JP, Nishi Y, Gibbon J, Dai H (2005) Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc Natl Acad Sci U S A 102(45):16141–16145

    Article  Google Scholar 

  12. Matsumoto N, Oshima A, Sakurai S, Yumura M, Hata K, Futaba DN (2015) Scalability of the heat and current treatment on SWCNTs to improve their crystallinity and thermal and electrical conductivities. Nanoscale Res Lett 10(1):1–7

    Article  Google Scholar 

  13. Yang J, Esconjauregui S, Robertson AW, Guo Y, Hallam T, Sugime H, Zhong G, Duesberg GS, Robertson J (2015) Growth of high-density carbon nanotube forests on conductive TiSiN supports. Appl Phys Lett 106(8):083108

    Article  Google Scholar 

  14. Ahmad M, Anguita JV, Stolojan V, Corless T, Chen JS, Carey JD, Silva SRP (2015) High quality carbon nanotubes on conductive substrates grown at low temperatures. Adv Funct Mater. doi:10.1002/adfm.201501214

    Google Scholar 

  15. Ma Y, Wang B, Wu Y, Huang Y, Chen Y (2011) The production of horizontally aligned single-walled carbon nanotubes. Carbon 49(13):4098–4110

    Article  Google Scholar 

  16. Yan F, Zhang C, Cott D, Zhong G, Robertson J (2010) High‐density growth of horizontally aligned carbon nanotubes for interconnects. Physica Status Solidi (b) 247(11–12): 2669–2672

    Google Scholar 

  17. Hayamizu Y, Yamada T, Mizuno K, Davis RC, Futaba DN, Yumura M, Hata K (2008) Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nat Nanotechnol 3(5):289–294

    Article  Google Scholar 

  18. Li H, Liu W, Cassell AM, Kreupl F, Banerjee K (2013) Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications—part I: process development. IEEE Trans Electron Devices 60(9):2862–2869

    Article  Google Scholar 

  19. Li H, Liu W, Cassell AM, Kreupl F, Banerjee K (2013) Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications—part II: characterization. IEEE Trans Electron Devices 60(9):2870–2876

    Article  Google Scholar 

  20. Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba D N, Yumura M, Hata K (2013) One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat Comm 4:1–7

    Google Scholar 

  21. Craddock JD, Weisenberger MC (2015) Harvesting of large, substrate-free sheets of vertically aligned multiwall carbon nanotube arrays. Carbon 81:839–841

    Article  Google Scholar 

  22. Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278

    Article  Google Scholar 

  23. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AW, Amram Bengio E, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116):182–186

    Article  Google Scholar 

  24. Parra-Vasquez ANG, Behabtu N, Green MJ, Pint CL, Young CC, Schmidt J, Kesselman E, Goyal A, Ajayan PM, Cohen Y, Talmon Y, Hauge RH, Pasquali M (2010) Spontaneous dissolution of ultralong single-and multiwalled carbon nanotubes. ACS Nano 4(7):3969–3978

    Article  Google Scholar 

  25. Gspann TS, Smail FR, Windle AH (2014) Spinning of carbon nanotube fibres using the floating catalyst high temperature route: purity issues and the critical role of sulphur. Faraday Discuss 173:47–65

    Google Scholar 

  26. Schauer MW, White MA (2015) Tailoring industrial scale CNT production to specialty markets. In: Proceedings of the MRS, vol 1752. Cambridge University Press, Cambridge, pp 103--109

    Google Scholar 

  27. Jarosz P, Schauerman C, Alvarenga J, Moses B, Mastrangelo T, Raffaelle R, Ridgley R, Landi B (2011) Carbon nanotube wires and cables: near-term applications and future perspectives. Nanoscale 3(11):4542–4553

    Article  Google Scholar 

  28. Kreupl F (2008) Carbon nanotubes in microelectronic applications. In: Hierold C (ed) Carbon nanotube devices: properties, modeling, integration and applications, vol 8. Wiley, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Kreupl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kreupl, F. (2017). Overview of Carbon Nanotube Processing Methods. In: Todri-Sanial, A., Dijon, J., Maffucci, A. (eds) Carbon Nanotubes for Interconnects. Springer, Cham. https://doi.org/10.1007/978-3-319-29746-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29746-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29744-6

  • Online ISBN: 978-3-319-29746-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics