Advertisement

Overview of Carbon Nanotube Processing Methods

  • Franz Kreupl
Chapter

Abstract

On February 16, in year 2000, the first patent application was filed that proposed to use carbon nanotubes (CNTs) instead of metals as vertical interconnects in advanced microelectronic interconnects on semiconductor chips [1]. This patent, which has been cited in over 150 following patent applications as prior art, emphasizes that CNTs would be especially useful in vertical interconnects (vias). The quasi-ballistic current transport in CNTs would allow very efficient low resistance interconnects which can mitigate the observed reliability issues in advanced semiconductor interconnects [2].

Keywords

Contact Resistance Chlorosulfonic Acid Chemical Vapor Deposition Reactor Vertical Interconnect Floating Catalyst Chemical Vapor Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Engelhardt M, Hönlein W, Kreupl F (2000) Electronic component comprising an electrically conductive connection consisting of carbon nanotubes and a method for producing the same. US Patent 7,321,097 B2, 16 Feb 2000Google Scholar
  2. 2.
    Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64(1):399–408CrossRefGoogle Scholar
  3. 3.
    Joselevich E, Dai H, Liu J, Hata K, Windle AH (2008) Carbon nanotube synthesis and organization. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes. Springer, Berlin, Heidelberg, pp 101–165Google Scholar
  4. 4.
    Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758CrossRefGoogle Scholar
  5. 5.
    Liu H, Takagi D, Chiashi S, Homma Y (2010) The growth of single-walled carbon nanotubes on a silica substrate without using a metal catalyst. Carbon 48(1):114–122CrossRefGoogle Scholar
  6. 6.
    Wang H, Yuan Y, Wei L, Goh K, Yu D, Chen Y (2015) Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon 81:1–19CrossRefGoogle Scholar
  7. 7.
    Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973):426–429 CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Huang JQ, Zhao MQ, Qian WZ, Wei F (2011) Carbon nanotube mass production: principles and processes. ChemSusChem 4(7):864–889CrossRefGoogle Scholar
  9. 9.
    Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN, Hata K (2013) The infinite possible growth ambients that support single-wall carbon nanotube forest growth. Sci Rep 3Google Scholar
  10. 10.
    Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewaparakrama K, Kim SM, Zakharov D, Stach EA, Sumanasekera GU (2009) Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326(5949):116–120CrossRefGoogle Scholar
  11. 11.
    Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie JP, Nishi Y, Gibbon J, Dai H (2005) Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc Natl Acad Sci U S A 102(45):16141–16145CrossRefGoogle Scholar
  12. 12.
    Matsumoto N, Oshima A, Sakurai S, Yumura M, Hata K, Futaba DN (2015) Scalability of the heat and current treatment on SWCNTs to improve their crystallinity and thermal and electrical conductivities. Nanoscale Res Lett 10(1):1–7CrossRefGoogle Scholar
  13. 13.
    Yang J, Esconjauregui S, Robertson AW, Guo Y, Hallam T, Sugime H, Zhong G, Duesberg GS, Robertson J (2015) Growth of high-density carbon nanotube forests on conductive TiSiN supports. Appl Phys Lett 106(8):083108CrossRefGoogle Scholar
  14. 14.
    Ahmad M, Anguita JV, Stolojan V, Corless T, Chen JS, Carey JD, Silva SRP (2015) High quality carbon nanotubes on conductive substrates grown at low temperatures. Adv Funct Mater. doi: 10.1002/adfm.201501214 Google Scholar
  15. 15.
    Ma Y, Wang B, Wu Y, Huang Y, Chen Y (2011) The production of horizontally aligned single-walled carbon nanotubes. Carbon 49(13):4098–4110CrossRefGoogle Scholar
  16. 16.
    Yan F, Zhang C, Cott D, Zhong G, Robertson J (2010) High‐density growth of horizontally aligned carbon nanotubes for interconnects. Physica Status Solidi (b) 247(11–12): 2669–2672Google Scholar
  17. 17.
    Hayamizu Y, Yamada T, Mizuno K, Davis RC, Futaba DN, Yumura M, Hata K (2008) Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nat Nanotechnol 3(5):289–294CrossRefGoogle Scholar
  18. 18.
    Li H, Liu W, Cassell AM, Kreupl F, Banerjee K (2013) Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications—part I: process development. IEEE Trans Electron Devices 60(9):2862–2869CrossRefGoogle Scholar
  19. 19.
    Li H, Liu W, Cassell AM, Kreupl F, Banerjee K (2013) Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications—part II: characterization. IEEE Trans Electron Devices 60(9):2870–2876CrossRefGoogle Scholar
  20. 20.
    Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba D N, Yumura M, Hata K (2013) One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat Comm 4:1–7Google Scholar
  21. 21.
    Craddock JD, Weisenberger MC (2015) Harvesting of large, substrate-free sheets of vertically aligned multiwall carbon nanotube arrays. Carbon 81:839–841CrossRefGoogle Scholar
  22. 22.
    Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278CrossRefGoogle Scholar
  23. 23.
    Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AW, Amram Bengio E, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116):182–186CrossRefGoogle Scholar
  24. 24.
    Parra-Vasquez ANG, Behabtu N, Green MJ, Pint CL, Young CC, Schmidt J, Kesselman E, Goyal A, Ajayan PM, Cohen Y, Talmon Y, Hauge RH, Pasquali M (2010) Spontaneous dissolution of ultralong single-and multiwalled carbon nanotubes. ACS Nano 4(7):3969–3978CrossRefGoogle Scholar
  25. 25.
    Gspann TS, Smail FR, Windle AH (2014) Spinning of carbon nanotube fibres using the floating catalyst high temperature route: purity issues and the critical role of sulphur. Faraday Discuss 173:47–65Google Scholar
  26. 26.
    Schauer MW, White MA (2015) Tailoring industrial scale CNT production to specialty markets. In: Proceedings of the MRS, vol 1752. Cambridge University Press, Cambridge, pp 103--109Google Scholar
  27. 27.
    Jarosz P, Schauerman C, Alvarenga J, Moses B, Mastrangelo T, Raffaelle R, Ridgley R, Landi B (2011) Carbon nanotube wires and cables: near-term applications and future perspectives. Nanoscale 3(11):4542–4553CrossRefGoogle Scholar
  28. 28.
    Kreupl F (2008) Carbon nanotubes in microelectronic applications. In: Hierold C (ed) Carbon nanotube devices: properties, modeling, integration and applications, vol 8. Wiley, LondonGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.TUMMunichGermany

Personalised recommendations