Skip to main content

Overview of the Interconnect Problem

Abstract

One of the major challenges that the semiconductor industry is expected to face in the pursuit of further miniaturization of the minimum feature size in the next decade is the degrading interconnect performance. Interconnects limit the performance of integrated circuits (IC) because they add extra delay to critical paths, dissipate dynamic power, disturb signal integrity, and impose reliability concerns due to electromigration (EM) and time-dependent dielectric breakdown (TDDB). Furthermore, variations in the interconnect features during manufacturing give rise to variations in circuit performance, which makes it increasingly difficult to predict circuit behavior at ultra-scaled technology generations. The exponential increase in the number of interconnects to be routed on a microchip requires a substantial amount of effort to be devoted to design and process optimizations and increases the cost due to the increasing number of required metal levels. All of these limitations become increasingly restrictive with dimensional scaling. In this chapter, the challenges associated with integrating the conventional copper-based interconnect technology at future technology generations are described.

Keywords

  • Power Dissipation
  • Metal Level
  • Technology Node
  • Critical Path Delay
  • Dimensional Scaling

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dennard R, Gaensslen F, Rideout V, Bassous E, LeBlanc A (1974) Design of ion-implanted MOSFETs with very small dimensions. IEEE J Solid-State Circuits 9:256–268

    CrossRef  Google Scholar 

  2. Buchanan D (1999) Scaling the gate dielectric: materials, integration and reliability. IBM J Res Dev 43:245–264

    CrossRef  Google Scholar 

  3. Yeo Y, Lu Q, Lee W, King T-J, Hu C, Wang X, Ma T (2000) Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric. IEEE Electron Device Lett 21:540–542

    CrossRef  Google Scholar 

  4. Bai P et al (2004) A 65 nm logic technology featuring 35 nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-κ ILD and 0.57 mm2 SRAM cell. In: IEDM Technical Digest, pp 657–660

    Google Scholar 

  5. Antoniadis D, Aberg I, Ni Chleirigh C, Nayfeh O, Khakifirooz A, Hoyt J (2006) Continuous MOSFET performance increase with device scaling: the role of strain and channel material innovations. IBM J Res Dev 50:363–376

    CrossRef  Google Scholar 

  6. Chau R, Datta S, Doczy M, Kavalieros J, Metz M (2003) Gate dielectric scaling for high–performance CMOS: from SiO2 to high–κ. In: International Workshop on Gate Insulator, pp124–126

    Google Scholar 

  7. Auth C et al (2008) 45nm high–κ + metal gate strain–enhanced transistors. In: Symposium on VLSI Technology, pp 128–129

    Google Scholar 

  8. Auth C et al (2012) A 22nm high–performance and low–power CMOS technology featuring fully–depleted tri–gate transistors, self–aligned contacts and high density MIM capacitors. In: Symposium on VLSI Technology, pp 131–132

    Google Scholar 

  9. Bohr M (2009) The new era of scaling in an SoC world. In: IEEE International Solid State Circuits Conference, pp 23–28

    Google Scholar 

  10. Edelstein D et al (1997) Full copper wiring in a sub–0.25 mm CMOS ULSI technology. In: IEDM Technical Digest, pp 773–776

    Google Scholar 

  11. Lin Y-M et al (2010) 100–GHz transistors from wafer scale epitaxial graphene. Science 327:662

    CrossRef  Google Scholar 

  12. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    CrossRef  Google Scholar 

  13. Naeemi A, Meindl J (2007) Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE Trans Electron Devices 54:26–37

    CrossRef  Google Scholar 

  14. Naeemi A, Meindl J (2009) Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans Electron Devices 56:1822–1833

    CrossRef  Google Scholar 

  15. Nathanael R, Pott V, Kam H, Jeon J, Liu T-J (2009) 4-Terminal relay technology for complementary logic. In: IEDM Technical Digest, pp 1–4

    Google Scholar 

  16. Beausoleil R et al (2008) Nanoelectronic and nanophotonic interconnect. Proc IEEE 96:230–246

    CrossRef  Google Scholar 

  17. Krishmamoorthy A et al (2009) Computer systems based on silicon photonic interconnects. Proc IEEE 97:1337–1361

    CrossRef  Google Scholar 

  18. Behin-Aein B, Datta D, Salahuddin S, Datta S (2010) Proposal for an all-spin logic device with built-in memory. Nat Nanotechnol 5:266–270

    CrossRef  Google Scholar 

  19. Gambino J, Lee T, Chen F, Sullivan T (2009) Reliability challenges for advanced copper interconnects: electromigration and time-dependent dielectric breakdown (TDDB). In: IEEE international symposium on the physical and failure analysis of integrated circuits, pp677–684

    Google Scholar 

  20. Kaloyeros A, Eisenbraun ET, Dunn K, Van der Straten O (2011) Zero thickness diffusion barriers and metallization liners for nanoscale device applications. Chem Eng Commun 198:1453–1481

    CrossRef  Google Scholar 

  21. Steinhoegl W, Schindler G, Engelhardt M (2005) Unraveling the mysteries behind size effects in metallization systems. Semicond Int 28:34–38

    Google Scholar 

  22. Lopez G, Davis J, Meindl J (2009) A new physical model and experimental measurements for copper interconnect resistivity considering size effects and line-edge roughness (LER). In: IEEE international interconnect technology conference, Sapporo, pp 231–234, 1–3 June 2009

    Google Scholar 

  23. International Technology Roadmap for Semiconductors (2013) Online http://www.itrs.net

  24. Wu F, Levitin G, Hess W (2010) Low-temperature etching of Cu by hydrogen-based plasmas. ACS Appl Mater Interfaces 2:2175–2179

    CrossRef  Google Scholar 

  25. Steinhoegl W, Schindler G, Steinlesberger G, Traving M, Engelhardt M (2005) Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J Appl Phys 97:023706-1-023706-7

    Google Scholar 

  26. Shimada M, Moriyama M, Ito K, Tsukimoto S, Murakami M (2006) Electrical resistivity of polycrystalline Cu interconnects with nanoscale linewidth. J Vac Sci Technol B 24(1):190–194

    CrossRef  Google Scholar 

  27. Steinhoegl W, Schindler G, Steinlesberger G, Traving M, Engelhardt M (2004) Impact of line edge roughness on the resistivity of nanometer-scale interconnects. Microelectron Eng 76(1–4):126–130

    CrossRef  Google Scholar 

  28. Kitada H et al (2007) The influence of the size effect of copper interconnects on RC delay variability beyond 45 nm technology. In: IEEE IITC, pp 10–12

    Google Scholar 

  29. Plombon JJ, Andideh E, Dubin VM, Maiz J (2006) Influence of phonon, geometry, impurity, and grain size on copper line resistivity. Appl Phys Lett 89(11):113124–113124-3

    Google Scholar 

  30. Chen H-C, Chen H-W, Jeng S-P, Wu C-MM, Sun JY-C (2006) Resistance increase in metal nano-wires. In: International symposium on VLSI technology, systems and applications, pp1–2

    Google Scholar 

  31. Besling WFA, Broekaart M, Arnal V, Torres J (2004) Line resistance behaviour in narrow lines patterned by a TiN hard mask spacer for 45 nm node interconnects. Microelectron Eng 76(1–4):167–174

    CrossRef  Google Scholar 

  32. Guillaumond J et~al (2003) Analysis of resistivity in nano-interconnect: full range (4.2–300 K) temperature characterization. In: IEEE IITC, Burlingame, pp 132–134

    Google Scholar 

  33. Chern J-H, Huang J, Arledge L, Li P-C, Yang P (1992) Multilevel metal capacitance models for CAD design synthesis systems. IEEE Electron Device Lett 13(1):32–34

    CrossRef  Google Scholar 

  34. Magen N, Kolodny A, Weiser U, Shamir N (2004) Interconnect power dissipation in a microprocessor, In: International workshop on system level interconnect prediction, pp 7–13

    Google Scholar 

  35. Sinha S, Yeric G, Chandra V, Cline B, Cao Y (2012) Exploring sub-20 nm FinFET design with predictive technology models. In: Design automation conference, San Francisco, pp 283–288

    Google Scholar 

  36. Kilby J (1976) Invention of the integrated circuit. IEEE Trans Electron Devices 23:648–654

    CrossRef  Google Scholar 

  37. Danko S (1951) New developments in the Auto-Sembly technique of circuit fabrication. In: Proceedings of the national electronics conference, pp 542–550

    Google Scholar 

  38. Nangate (2011) Nangate FreePDK45 Open Cell Library. Online http://www.nangate.com

  39. Synopsys (2012) Synopsys Design Compiler, version: 2012.06-SP5. Online http://www.synopsys.com

  40. Cadence Design Systems (2013) Encounter digital implementation system, version: 2013.1. Online http://www.cadence.com

  41. Synopsys (2011) Synopsys PrimeTime, version: 2011.06-SP3-2. Online http://www.synopsys.com

  42. Chen J-C, Standaert T, Alptekin E, Spooner T, Paruchuri V (2014) Interconnect performance and scaling strategy at 7 nm node. In: IEEE International interconnect technology conference, pp 93–96

    Google Scholar 

  43. Synopsys (2012) Synopsys Raphael, version: 2012.06. Online http://www.synopsys.com

  44. Davis J, De V, Meindl J (1998) A stochastic wire-length distribution for gigascale integration (GSI) – part I: derivation and validation. IEEE Trans Electron Devices 45:580–589

    CrossRef  Google Scholar 

  45. Sekar D, Naeemi A, Sarvari R, Meindl J (2007) IntSim: A CAD tool for optimization of multilevel interconnect networks. In: ICCAD, San Jose, pp 560–567, 4–8 November 2007

    Google Scholar 

  46. Sekar D, Venkatesan R, Bowman K, Joshi A, Davis J, Meindl J (2006) Optimal repeaters for sub-50 nm interconnect networks. In: IEEE international interconnect technology conference, pp 199–201

    Google Scholar 

  47. Chen Q, Davis J, Zarkesh-Ha P, Meindl JD (2000) A compact physical via blockage model. IEEE Trans VLSI Syst 8(6):689–692

    CrossRef  Google Scholar 

  48. Sarvari R, Naeemi A, Zarkesh-Ha P, Meindl JD (2007) Design and optimization for nanoscale power distribution networks in gigascale systems. In: IEEE IITC, pp 190–192

    Google Scholar 

  49. Damaraju S et al (2012) A 22 nm IA multi-CPU and GPU system-on-chip. In: IEEE international solid-state circuits conference digest of technical papers. San Francisco, CA, pp56–57

    Google Scholar 

  50. Nassif SR, Nam G–J, Banerjee S (2013) Wire delay variability in nanoscale technology and its impact on physical design. ISQED, Santa Clara, pp 591–596, 4–6 March 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azad Naeemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ceyhan, A., Naeemi, A. (2017). Overview of the Interconnect Problem. In: Todri-Sanial, A., Dijon, J., Maffucci, A. (eds) Carbon Nanotubes for Interconnects. Springer, Cham. https://doi.org/10.1007/978-3-319-29746-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29746-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29744-6

  • Online ISBN: 978-3-319-29746-0

  • eBook Packages: EngineeringEngineering (R0)