Skip to main content

Performance Comparison Between a Nonlinear Energy Sink and a Linear Tuned Vibration Absorber for Broadband Control

  • Conference paper
  • First Online:

Abstract

The performance of a linear tuned vibration absorber (LTVA) and a nonlinear energy sink (NES) for the vibrationcert mitigation of an unain linear primary system is investigated. An analytic tuning rule for the LTVA when the primary system contains uncertainty is derived. The behavior of the linear system coupled to the NES is analyzed theoretically. A tuning methodology for the NES in the deterministic as well as for the uncertain case is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asami, T., Nishihara, O.: Closed-form exact solution to h\(\infty \) optimization of dynamic vibration absorbers (application to different transfer functions and damping systems). J. Vib. Acoust. 125(3), 398–405 (2003)

    Article  Google Scholar 

  2. Den Hartog, J.P.: Mechanical Vibrations. Courier Corporation, Mineola, NY (1985)

    MATH  Google Scholar 

  3. Frahm, H.: Device for damping vibrations of bodies. US Patent 989,958, 18 April 1911

    Google Scholar 

  4. Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37(2), 115–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., Mcloskey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. 136(2), 021021 (2014)

    Article  Google Scholar 

  7. Habib, G., Kerschen, G.: Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 471, p. 20140976. The Royal Society, London (2015)

    Google Scholar 

  8. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3), 371–452 (2008)

    Article  Google Scholar 

  9. Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via a mixed multiple scale/harmonic balance algorithm. Nonlinear Dyn. 70(3), 2049–2061 (2012)

    Article  MathSciNet  Google Scholar 

  10. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. J. Vib. Control (2013). doi:1077546313480542

    Google Scholar 

  11. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1), 515–530 (2009)

    Article  Google Scholar 

  12. Náprstek, J., Fischer, C.: Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper. Comput. Struct. 87(19), 1204–1215 (2009)

    Article  Google Scholar 

  13. Parseh, M., Dardel, M., Ghasemi, M.H.: Performance comparison of nonlinear energy sink and linear tuned mass damper in steady-state dynamics of a linear beam. Nonlinear Dyn. 1–22 (2015)

    Google Scholar 

  14. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51(1–2), 47–57 (2008)

    MATH  Google Scholar 

  15. Starosvetsky, Y., Gendelman, O.V.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312(1), 234–256 (2008)

    Article  Google Scholar 

  16. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2D of oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.-H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4), 763–780 (2011)

    MATH  Google Scholar 

  19. Warminski, J., Kecik, K.: Instabilities in the main parametric resonance area of a mechanical system with a pendulum. J. Sound Vib. 322(3), 612–628 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Gourc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Gourc, E., Elce, L.D., Kerschen, G., Michon, G., Aridon, G., Hot, A. (2016). Performance Comparison Between a Nonlinear Energy Sink and a Linear Tuned Vibration Absorber for Broadband Control. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29739-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29739-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29738-5

  • Online ISBN: 978-3-319-29739-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics