Skip to main content

Hysteresis Identification Using Nonlinear State-Space Models

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 1

Abstract

Most studies tackling hysteresis identification in the technical literature follow white-box approaches, i.e. they rely on the assumption that measured data obey a specific hysteretic model. Such an assumption may be a hard requirement to handle in real applications, since hysteresis is a highly individualistic nonlinear behaviour. The present paper adopts a black-box approach based on nonlinear state-space models to identify hysteresis dynamics. This approach is shown to provide a general framework to hysteresis identification, featuring flexibility and parsimony of representation. Nonlinear model terms are constructed as a multivariate polynomial in the state variables, and parameter estimation is performed by minimising weighted least-squares cost functions. Technical issues, including the selection of the model order and the polynomial degree, are discussed, and model validation is achieved in both broadband and sine conditions. The study is carried out numerically by exploiting synthetic data generated via the Bouc-Wen equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morrison, D., Jia, Y., Moosbrugger, J.: Cyclic plasticity of nickel at low plastic strain amplitude: hysteresis loop shape analysis. Mater. Sci. Eng. A314, 24–30 (2001)

    Article  Google Scholar 

  2. Bertotti, G.: Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. Academic, San Diego (1998)

    Google Scholar 

  3. Mueller, T.: The influence of laminar separation and transition on low Reynolds number airfoil hysteresis. AIAA J. Aircr. 22(9), 763–770 (1985)

    Article  Google Scholar 

  4. Angeli, D., Ferrell, J., Sontag, E.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. U. S. A. 101(7), 1822–1827 (2004)

    Article  Google Scholar 

  5. Beisner, B., Haydon, D., Cuddington, K.: Alternative stable states in ecology. Front. Ecol. Environ. 1(7), 376–382 (2003)

    Article  Google Scholar 

  6. Ramachandran, V., Anstis, S.: Perceptual organization in multistable apparent motion. Perception 14, 135–143 (1985)

    Article  Google Scholar 

  7. Gaul, L., Nitsche, R.: The role of friction in mechanical joints. Appl. Mech. Rev. 54(2), 93–106 (2001)

    Article  Google Scholar 

  8. Bernstein, D.: Ivory ghost. IEEE Control Syst. Mag. 27, 16–17 (2007)

    Article  Google Scholar 

  9. Jinhyoung, O., Drincic, B., Bernstein, D.: Nonlinear feedback models of hysteresis. IEEE Control Syst. Mag. 29(1), 100–119 (2009)

    Article  MathSciNet  Google Scholar 

  10. Hassani, V., Tjahjowidodo, T., Do, T.: A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49, 209–233 (2014)

    Article  Google Scholar 

  11. Charalampakis, A., Koumousis, V.: Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm. J. Sound Vib. 314, 571–585 (2008)

    Article  MATH  Google Scholar 

  12. Worden, K., Manson, G.: On the identification of hysteretic systems, Part I: fitness landscapes and evolutionary identification. Mech. Syst. Signal Process. 29, 201–212 (2012)

    Google Scholar 

  13. Charalampakis, A., Dimou, C.: Identification of Bouc-Wen hysteretic systems using particle swarm optimization. Comput. Struct. 88, 1197–1205 (2010)

    Article  Google Scholar 

  14. Worden, K., Becker, W.: On the identification of hysteretic systems, Part II: Bayesian sensitivity analysis and parameter confidence. Mech. Syst. Signal Process. 29, 213–227 (2012)

    Google Scholar 

  15. Worden, K., Hensman, J.: Parameter estimation and model selection for a class of hysteretic systems using Bayesian inference. Mech. Syst. Signal Process. 32, 153–169 (2012)

    Article  Google Scholar 

  16. Ortiz, G., Alvarez, D., Bedoya-Ruiz, D.: Identification of Bouc-Wen type models using the transitional Markov Chain Monte Carlo method. Comput. Struct. 146, 252–269 (2015)

    Article  Google Scholar 

  17. Worden, K., Barthorpe, R.: Identification of hysteretic systems using NARX models, Part I: evolutionary identification. In: Proceedings of the 29th International Modal Analysis Conference (IMAC), Jacksonville (2012)

    Google Scholar 

  18. Xie, S., Zhang, Y., Chen, C., Zhang, X.: Identification of nonlinear hysteretic systems by artificial neural networks. Mech. Syst. Signal Process. 34, 76–87 (2013)

    Article  Google Scholar 

  19. Radouane, A., Ahmed-Ali, T., Giri, F.: Parameter identification of Hammerstein systems with Bouc-Wen hysteresis input nonlinearity. In: Proceedings of the European Control Conference (ECC), Strasbourg (2014)

    Google Scholar 

  20. Ktena, A., Fotiadis, D., Spanos, P., Massalas, C.: A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys. Phys. B Condens. Matter 306(1–4), 84–90 (2001)

    Article  MATH  Google Scholar 

  21. Mignolet, M., Song, P., Wang, X.: A stochastic Iwan-type model for joint behavior variability modeling. J. Sound Vib. 349, 289–298 (2015)

    Article  Google Scholar 

  22. Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J., Pintelon, R.: Identification of nonlinear systems using polynomial nonlinear state space models. Automatica 46, 647–656 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Widanage, W., Stoev, J., Van Mulders, A., Schoukens, J., Pinte, G.: Nonlinear system identification of the filling phase of a wet-clutch system. Control Eng. Pract. 19, 1506–1516 (2011)

    Article  Google Scholar 

  24. Marconato, A., Schoukens, M., Tiels, K., Widanage, W., Abu-Rmileh, A., Schoukens, J.: Comparison of several data-driven non-linear system identification methods on a simplified glucoregulatory system example. IET Control Theory Appl. 8(17), 1921–1930 (2014)

    Article  Google Scholar 

  25. Relan, R., Vanbeylen, L., Firouz, Y., Schoukens, J.: Characterization and nonlinear modelling of Li-Ion battery. In: Proceedings of the 34th Benelux Meeting on Systems and Control, Lommel (2015)

    Google Scholar 

  26. Bouc, R.: Forced vibrations of a mechanical system with hysteresis. In: Proceedings of the 4th Conference on Nonlinear Oscillations, Prague (1967)

    Google Scholar 

  27. Wen, Y.: Method for random vibration of hysteretic systems. ASCE J. Eng. Mech. Div. 102(2), 249–263 (1976)

    Google Scholar 

  28. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc-Wen model, a survey. Arch. Comput. Methods Eng. 16, 161–188 (2009)

    Article  MATH  Google Scholar 

  29. Ikhouane, F., Rodellar, J.: Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model. Wiley, Chichester (2007)

    Book  MATH  Google Scholar 

  30. Pintelon, R., Schoukens, J.: System Identification: A Frequency Domain Approach. IEEE, Piscataway (2001)

    Book  MATH  Google Scholar 

  31. Géradin, M., Rixen, D.: Mechanical Vibrations: Theory and Application to Structural Dynamics. Wiley, Chichester (2015)

    Google Scholar 

  32. Schoukens, J., Pintelon, R., Dobrowiecki, T.: Linear modeling in the presence of nonlinear distortions. IEEE Trans. Instrum. Meas. 51, 786–792 (2002)

    Article  MATH  Google Scholar 

  33. Schoukens, J., Pintelon, R., Rolain, Y.: Mastering System Identification in 100 Exercises. IEEE, Piscataway (2012)

    Book  Google Scholar 

  34. Schoukens, J., Pintelon, R., Dobrowiecki, T., Rolain, Y.: Identification of linear systems with nonlinear distortions. Automatica 41, 491–504 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fliess, M., Normand-Cyrot, D.: On the approximation of nonlinear systems by some simple state-space models. In: Proceedings of the 6th IFAC Symposium on Identification and Parameter Estimation Conference, Washington (1982)

    Google Scholar 

  36. Paduart, J.: Identification of nonlinear systems using polynomial nonlinear state space models. Ph.D. thesis, Vrije Universiteit Brussel, Brussels (2007)

    Google Scholar 

  37. McKelvey, T., Cay, H.A., Ljung, L.: Subspace-based multivariable system identification from frequency response data. IEEE Trans. Autom. Control 41(7), 960–979 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pintelon, R.: Frequency-domain subspace system identification using non-parametric noise models. Automatica 38, 1295–1311 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Levenberg, K.: A method for the solution of certain problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  40. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  41. D’haene, T., Pintelon, R., Schoukens, J., Van Gheem, E.: Variance analysis of frequency response function measurements using periodic excitations. IEEE Trans. Instrum. Meas. 54(4), 1452–1456 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Fund for Scientific Research (FWO-Vlaanderen), by the Flemish Government (Methusalem), by the Belgian Government through the Inter university Poles of Attraction (IAP VII) Program, and by the ERC advanced grant SNLSID, under contract 320378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Noël .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Noël, J.P., Esfahani, A.F., Kerschen, G., Schoukens, J. (2016). Hysteresis Identification Using Nonlinear State-Space Models. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29739-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29739-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29738-5

  • Online ISBN: 978-3-319-29739-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics