Advertisement

Active Interrogation

  • Edward C. MorseEmail author
Chapter
Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)

Abstract

Active interrogation is defined and general properties of active interrogation systems are described for various applications. Active interrogation with fast neutron sources are detailed, including differential die-away analysis, delayed neutrons from fission, and delayed gammas from fission. Next a treatment of neutron transport for fast neutrons is given, along with concepts from age theory and methods to treat hydrogenous media. Next photofission active interrogation is explored. Then nuclear resonance fluorescence (NRF) is studied from the nuclear physics involved, and from potential practical implementations. Photon sources for NRF are studied, including bremsstrahlung, laser Compton upshift, and laser wakefield acceleration combined with Compton upshift. Lastly, the health physics aspects applicable to these systems are presented, with some examples of radiation dose calculations for neutron-based and photon-based systems.

Keywords

Fast Neutron Active Interrogation Cargo Container Delayed Neutron Neutron Count Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Accatino DSM, Bernstein A, Dougan JCA, Hall J, Loshak A, Manatt D, Meyer A, Pohl B, Prussin S, Walling R, Weirup D (2003) Detection of special nuclear material in cargo containers using neutron interrogation. UCRL-ID-155315. https://e-reports-ext.llnl.gov/pdf/244044.pdf
  2. 2.
    Argonne National Laboratory (1963) Reactor Physics Constants. Atomic Energy Commission. doi: 10.2172/4620873. http://www.osti.gov/scitech/servlets/purl/4620873
  3. 3.
    Beckurts K, Wirtz K (1964) Slowing-down parameters. In: Neutron Physics. Springer, Berlin, pp 342–360. doi: 10.1007/978-3-642-87614-1_16
  4. 4.
  5. 5.
    Bertozzi W, Caggiano JA, Hensley WK, Johnson MS, Korbly SE, Ledoux RJ, McNabb DP, Norman EB, Park WH, Warren GA (2008) Nuclear resonance fluorescence excitations near 2 Mev in \(^{235}\) U and \(^{239}\) Pu. Phys Rev C 78, 041,601. doi: 10.1103/PhysRevC.78.041601
  6. 6.
    Bertozzi W, Ledoux RJ (2005) Nuclear resonance fluorescence imaging in non-intrusive cargo inspection. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 241(14), 820–825. doi: 10.1016/j.nimb.2005.07.202. http://www.sciencedirect.com/science/article/pii/S0168583X05013303 (Proceedings of the Eighteenth International Conference on the Application of Accelerators in Research and Industry (CAARI 2004))
  7. 7.
    Blanc P, Tobin S, Croft S, Swinhoe M, Menlove H, Lee T (2010) Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies. Unclassified Report LA-UR-10-08013. http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-10-08013
  8. 8.
    Blanc P, Tobin SJ, Lee T, Hu J, Hendricks J, Croft S (2010) Delayed neutron detection with an integrated differential die-away and a delayed neutron instrument. Unclassified Report LA-UR-10-04125. http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-10-04125
  9. 9.
    Butkus R, Danielius R, Dubietis A, Piskarskas A, Stabinis A (2004) Progress in chirped pulse optical parametric amplifiers. Appl Phys B 79(6):693–700. doi: 10.1007/s00340-004-1614-3
  10. 10.
    Chadwick M, Obložinský P, Herman M et al (2006) ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nucl Data Sheets 107(12):2931–3118. doi: 10.1016/j.nds.2006.11.001. http://www.sciencedirect.com/science/journal/00903752
  11. 11.
    Chichester DL, Seabury EH (2008) Active interrogation using electronic neutron generators for nuclear safeguards applications. Preprint INL/CON-08-14196. http://www5vip.inl.gov/technicalpublications/documents/4096530.pdf
  12. 12.
    Church J, Slaughter D, Asztalos S, Biltoft P, Descalle MA, Hall J, Luu T, Manatt D, Mauger J, Norman E, Petersen D, Prussin S (2007) Signals and interferences in the nuclear car wash. Nucl Inst Methods Phys Res B 261(1–2), 351–355 (2007). doi: 10.1016/j.nimb.2007.04.264
  13. 13.
    Dietrich SS, Berman BL (1988) Atlas of photoneutron cross sections obtained with monoenergetic photons. Atomic Data Nucl Data Tables 38(2):199–338. doi: 10.1016/0092-640X(88)90033-2. http://www.sciencedirect.com/science/article/pii/0092640X88900332
  14. 14.
    Dooling JC Dose calculations using MAERS. Argonne National Laboratory Technical Report (Bremsstrahlung beamstops and collimators in APS beam line stations)Google Scholar
  15. 15.
    Engle LB, Fisher PC (1962) Energy and time dependence for delayed gammas from fission. Unclassified Report LAMS-2642. https://www.fas.org/sgp/othergov/doe/lanl/lib-www/la-pubs/00209999.pdf
  16. 16.
    Eriksson S, Mackey E, Lindstrom R, Lamaze G, Grogan K, Brady D (2013) Delayed-neutron activation analysis at NIST. J Radioanal Nucl Chem 298(3):1819–1822. doi: 10.1007/s10967-013-2568-x
  17. 17.
    Franck JC (1988) Bremsstrahlung du faisceau stocke sur les molecules residuelles de la chambre avide de suder ACO. LURE EP 8801Google Scholar
  18. 18.
    Geddes CG, Rykovanov S, Matlis NH, Steinke S, Vay JL, Esarey EH, Ludewigt B, Nakamura K, Quiter BJ, Schroeder CB, Toth C, Leemans WP (2015) Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 350:116–121. doi: 10.1016/j.nimb.2015.01.013. http://www.sciencedirect.com/science/article/pii/S0168583X15000269
  19. 19.
    Hall J, Asztalos S, Biltoft P, Church J, Descalle MA, Luu T, Manatt D, Mauger G, Norman E, Petersen D, Pruet J, Prussin S, Slaughter D (2007) The nuclear car wash: Neutron interrogation of cargo containers to detect hidden SNM. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 261(12), 337–340. doi: 10.1016/j.nimb.2007.04.263. http://www.sciencedirect.com/science/article/pii/S0168583X07007355 (Proceedings of the Nineteenth International Conference on the Application of Accelerators in Research and Industry)
  20. 20.
    Hamilton W (1975) The electromagnetic interaction in nuclear spectroscopy. North-Holland. https://books.google.com/books?id=CU6BAAAAIAAJ
  21. 21.
    Hartemann FV, Gibson DJ, Brown WJ, Rousse A, Phuoc KT, Mallka V, Faure J, Pukhov A (2007) Compton scattering x-ray sources driven by laser wakefield acceleration. Phys Rev ST Accel Beams 10, 011,301. doi: 10.1103/PhysRevSTAB.10.011301
  22. 22.
    Heil R, Pitz H, Berg U, Kneissl U, Hummel K, Kilgus G, Bohle D, Richter A, Wesselborg C, Brentano PV (1988) Observation of orbital magnetic dipole strength in the actinide nuclei \(^{232}\)Th and \(^{238}\)U. Nucl Phys A 476(1):39–47. doi: 10.1016/0375-9474(88)90371-5. http://www.sciencedirect.com/science/article/pii/0375947488903715
  23. 23.
    Hubbell JH, Seltzer SM (1996) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 kev to 20 Mev for elements z = 1 to 92 and 48 additional substances of dosimetric interest. NIST Publication 5632. http://www.nist.gov/pml/data/xraycoef/
  24. 24.
    International Committee on Radiological Protection (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37:2–4Google Scholar
  25. 25.
    Jones JL, Blackburn BW, Norman DR, Watson SM, Haskell KJ, Johnson JT, Hunt AW, Harmon F, Moss C (2007) Status of the prototype pulsed photonuclear assessment (ppa) inspection system. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 579(1), 353–356 (2007). doi: 10.1016/j.nima.2007.04.075. http://www.sciencedirect.com/science/article/pii/S0168900207006468 (Proceedings of the 11th Symposium on Radiation Measurements and Applications)
  26. 26.
    Jordan KA, Gozani T (2007) Detection of 235U in hydrogenous cargo with differential die-away analysis and optimized neutron detectors. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 579(1), 388–390. doi: 10.1016/j.nima.2007.04.083. http://www.sciencedirect.com/science/article/pii/S0168900207006584 (Proceedings of the 11th Symposium on Radiation Measurements and Applications)
  27. 27.
    Jordan KA, Gozani T (2007) Pulsed neutron differential die away analysis for detection of nuclear materials. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 261(12), 365–368. doi: 10.1016/j.nimb.2007.04.294. http://www.sciencedirect.com/science/article/pii/S0168583X0700924X (Proceedings of the Nineteenth International Conference on The Application of Accelerators in Research and Industry)
  28. 28.
    Jordan KA, Vujic J, Gozani T (207) Remote thermal neutron die-away measurements to improve differential die-away analysis. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 579(1), 407–409. doi: 10.1016/j.nima.2007.04.089. http://www.sciencedirect.com/science/article/pii/S0168900207006638 (Proceedings of the 11th Symposium on Radiation Measurements and Applications)
  29. 29.
    Keepin GR, Wimett TF, Zeigler RK (1957) Delayed neutrons from fissionable isotopes of uranium, plutonium, and thorium. Phys Rev 107:1044–1049. doi: 10.1103/PhysRev.107.1044
  30. 30.
    Khan SM, Nicholas PE, Terpilak MS (2004) Radiation dose equivalent to stowaways in vehicles. Health Phys 483–492Google Scholar
  31. 31.
    Kneissl U, Pitz H, Zilges A (1996) Investigation of nuclear structure by resonance fluorescence scattering. Progr Particle Nucl Phys 37:349–433. doi: 10.1016/0146-6410(96)00055-5. http://www.sciencedirect.com/science/article/pii/0146641096000555
  32. 32.
    Lamb WE (1939) Capture of neutrons by atoms in a crystal. Phys Rev 55:190–197. doi: 10.1103/PhysRev.55.190
  33. 33.
    Leemans WP, Gonsalves AJ, Mao HS, Nakamura K, Benedetti C, Schroeder CB, Tóth C, Daniels J, Mittelberger DE, Bulanov SS, Vay JL, Geddes CGR, Esarey E (2014) Multi-gev electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys Rev Lett 113, 245,002. doi: 10.1103/PhysRevLett.113.245002
  34. 34.
    Lin EC (2010) Radiation risk from medical imaging. Mayo Clinic Proc 85(12), 1142–1146. doi: 10.4065/mcp.2010.0260. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996147/
  35. 35.
    Metzger FR (1959) Resonance fluorescence in nuclei. Prog Nucl Phys 7:54–88Google Scholar
  36. 36.
    Negm H, Ohgaki H, Daito I, Hayakawa T, Zen H, Kii T, Masuda K, Hori T, Hajima R, Shizuma T, Kikuzawa N (2015) Reaction-yield dependence of the (\(\gamma ,\gamma ^\prime \)) reaction of 238u on the target thickness. J Nucl Sci Technol 52(6):811–820. doi: 10.1080/00223131.2014.980348
  37. 37.
    Nelson RO, Chadwick MB, Michaudon A, Young PG (2001) High-resolution measurements and calculations of photon-production cross sections for \(^{16}\)O(n,x\(\gamma \)) reactions induced by neutrons with energies between 4 and 200 MeV. Nucl Sci Eng 138, 105. http://www.ans.org/pubs/journals/nse/vv-138
  38. 38.
    Norman DR, Jones JL, Blackburn BW, Haskell KJ, Johnson JT, Watson SM, Hunt AW, Spaulding R, Harmon F (2007) Time-dependent delayed signatures from energetic photon interrogations. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 261(12), 316–320. doi: 10.1016/j.nimb.2007.04.288. http://www.sciencedirect.com/science/article/pii/S0168583X0700897X (Proceedings of the Nineteenth International Conference on The Application of Accelerators in Research and Industry)
  39. 39.
    O’Dell A Jr, Sandifer C, Knowlen R, George W (1968) Measurement of absolute thick-target bremsstrahlung spectra. Nucl Instrum Methods 61(3):340–346. doi: 10.1016/0029-554X(68)90248-6. http://www.sciencedirect.com/science/article/pii/0029554X68902486
  40. 40.
    Particle Data Group (2014) Atomic and nuclear properties of materials for more than 300 materials. http://pdg.lbl.gov/2014/AtomicNuclearProperties/
  41. 41.
    Pruet J, Descalle MA, Hall J, Pohl B, Prussin SG (2005) Neutron and photon transport in seagoing cargo containers. J Appl Phys 97(9):094908. doi: 10.1063/1.1887835. http://scitation.aip.org/content/aip/journal/jap/97/9/10.1063/1.1887835
  42. 42.
    Pruet J, McNabb DP, Hagmann CA, Hartemann FV, Barty CPJ (2006) Detecting clandestine material with nuclear resonance fluorescence. J Appl Phys 99(12):123102. doi: 10.1063/1.2202005. http://scitation.aip.org/content/aip/journal/jap/99/12/10.1063/1.2202005
  43. 43.
    Quiter B, Ludewigt B, Mozin V, Wilson C, Korbly S (2011) Transmission nuclear resonance fluorescence measurements of \(^{238}\)U in thick targets. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 269(10):1130–1139. doi: 10.1016/j.nimb.2011.02.081. http://www.sciencedirect.com/science/article/pii/S0168583X11002643
  44. 44.
    Quiter BJ, Laplace T, Ludewigt BA, Ambers SD, Goldblum BL, Korbly S, Hicks C, Wilson C (2012) Nuclear resonance fluorescence in \({}^{240}\)Pu. Phys Rev C 86, 034,307. doi: 10.1103/PhysRevC.86.034307
  45. 45.
  46. 46.
    Rogers DWO (1984) Fluence to dose equivalent conversion factors calculated with EGS3 for electrons from 100 keV to 20 GeV and photons from 11 keV to 20 GeV. Health Phys 46(4):891–914Google Scholar
  47. 47.
    Rose M, Laboratory BN, Commission UAE (1953) A Table of the Integral [psi] (x, T). BNL (Series). Brookhaven National Laboratory. https://books.google.com/books?id=a0Y7iPdy-RwC
  48. 48.
    Runkle RC, Chichester DL, Thompson SJ (2012) Rattling nucleons: new developments in active interrogation of special nuclear material. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 663(1):75–95. doi: 10.1016/j.nima.2011.09.052. http://www.sciencedirect.com/science/article/pii/S016890021101847X
  49. 49.
    Rykovanov SG, Geddes CGR, Vay JL, Schroeder CB, Esarey E, Leemans WP (2014) Quasi-monoenergetic femtosecond photon sources from thomson scattering using laser plasma accelerators and plasma channels. J Phys B: Atom Mol Opt Phys 47(23), 234,013. http://stacks.iop.org/0953-4075/47/i=23/a=234013
  50. 50.
    Schear MA, Menlove HO, Evans LG, Tobin SJ, Croft S (2011) Spent fuel characterization using the differential die-away self-interrogation technique. Unclassified Report LA-UR-11-03423. http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-11-03423
  51. 51.
    Semenov VA (2014) Isotope-specific detection and assay: engineering solution with directional nuclear resonance fluorescence. PhD thesis, University of California, BerkeleyGoogle Scholar
  52. 52.
    Shaw TJ, Strellis DA, Stevenson J, Keeley D, Gozani T (2009) Fissile material detection by differential die away analysis. In: McDaniel FD, Doyle BL (eds) American Institute of Physics Conference Series, vol 1099, pp 633–637. doi: 10.1063/1.3120116
  53. 53.
    Sher R, Halpern J, Stephens WE (1951) Thresholds of photo-neutron reactions. Phys Rev 81:154–155. doi: 10.1103/PhysRev.81.154.2
  54. 54.
    Tanaka S, Tanaka R, Nakai Y, Ozawa K Data on thick target bremsstrahlung produced by electrons. JAERI-M 83-019. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/14/804/14804537.pdf
  55. 55.
    Tice R, Setlow R (1985) Dna repair and replication in aging organisms and cells. Handbook of the Biology of Aging, pp 173–224. Van Nostrand Reinhold (1985)Google Scholar
  56. 56.
    United Nations Scientific Committee on the Effects of Atomic Radiation (2010) Sources and effects of ionizing radiation UNSCEAR 2008. Report to the General Assembly 1, 40. http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_A.pdf
  57. 57.
    United States Government (2002) 10 FCR20 Subpart D—Radiation Dose Limits for Individual Members of the Public. http://www.nrc.gov/reading-rm/doc-collections/cfr/part020/part020-1301.html
  58. 58.
    Wrixon AD (2008) New icrp recommendations. J Radiol Protect 28(2), 161. http://stacks.iop.org/0952-4746/28/i=2/a=R02
  59. 59.
    Yevetska O, Enders J, Fritzsche M, von Neumann-Cosel P, Oberstedt S, Richter A, Romig C, Savran D, Sonnabend K (2010) Dipole strength in the \(^{235}\rm U\) \((\gamma ,{\gamma }^{^{\prime }})\) reaction up to \(2.8\) mev. Phys Rev C 81, 044,309. doi: 10.1103/PhysRevC.81.044309
  60. 60.
    Yoon JLJWY, Harker YD, Hoggan JM, Haskell KJ, VanAusdeln LA (2000) Proof-of-concept assessment of a photofission-based interrogation system for the detection of shielded nuclear material. Unclassified Report INEEL/EXT-2000-01523Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations