Nuclear Forensics

  • Edward C. MorseEmail author
Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)


The two types of nuclear forensics, pre-detonation and post-detonation, are differentiated, and the types of information to be gathered are identified. Methods to provide attribution are explored, including isotope chronometers on the actinide decays, oxygen, lead, and strontium isotope identification, material characteristics such as morphology and structure, and in the case of nuclear reactor fuel, the dimensions of the pellets. Plutonium is discussed from the standpoint of gallium alloying and from the microstructure, revealing heat treatments being used. Next, there is a discussion about the tools used in nuclear forensic analysis, including alpha, beta, and gamma spectroscopy, neutron counting, and various types of mass spectrometry.


Inductively Couple Plasma Mass Spectrometry Nuclear Forensic Initial Enrichment Nuclear Weapon State Thermal Neutron Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Becker JS, Dietze HJ (2000) Inorganic mass spectrometric methods for trace, ultratrace, isotope, and surface analysis. Int J Mass Spectrom 197(1–3):1–35. doi: 10.1016/S1387-3806(99)00246-8.
  2. 2.
    Diakov AC, Dmitriev AM, Kang J, Shuvayev AM, von Hippel FN (2006) Feasibility of converting russian icebreaker reactors from HEU to LEU fuel. Sci Global Secur 14:33–48CrossRefGoogle Scholar
  3. 3.
    Freibert FJ Presentation: “Plutonium Metallurgy". Los Alamos Laboratory Unclassified Report LA-UR-12-23982Google Scholar
  4. 4.
    Grant PM, Moody KJ, Hutcheon ID, Phinney DL, Haas JS, Volpe AM, Oldani JJ, Whipple RE, Stoyer N, Alcaraz A, Andrews JE, Russo RE, Klunder GL, Andresen BD, Cantlin S (1998) Forensic analyses of suspect illicit nuclear material. J Forensic Sci 43(3):680–688CrossRefGoogle Scholar
  5. 5.
    Hammel EF (1943–1945) Plutonium metallurgy at Los AlamosGoogle Scholar
  6. 6.
    Hecker S (2000) Plutonium an its alloys: from atoms to microstructure. Los Alamos Sci 26:290–335Google Scholar
  7. 7.
    Hecker S (2001) MRS Bull 26:672–678CrossRefGoogle Scholar
  8. 8.
    Hecker S, Martz JC (2000) Aging of plutonium and its alloys. Los Alamos Sci 26:238–243Google Scholar
  9. 9.
    Hecker S, Timofeeva LF A tale of two diagrams. Los Alamos Sci 244–251 (Number 26 2000)Google Scholar
  10. 10.
    Heller A (2012) Plutonium at 150 years: going strong and aging gracefully. Sci Technol Rev. Accessed 26 Mar 20l5
  11. 11.
    Knoll G (2000) Radiation detection and measurement. Wiley.
  12. 12.
    Mayer K, Wallenius M, Ray I (2005) Nuclear forensicsa methodology providing clues on the origin of illicitly trafficked nuclear materials. Analyst 130:433–441. doi: 10.1039/b412922a ADSCrossRefGoogle Scholar
  13. 13.
    Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113(2):884–900 (2013). doi: 10.1021/cr300273f. PMID: 23194287
  14. 14.
    Mitchell JN, Stan MD, Schwartz S, Boehert CJ (2004) Metall Mater Trans A 35A:2267–2278CrossRefGoogle Scholar
  15. 15.
    Moody KJ, Hutcheon ID, Grant PM (2005) Nuclear forensic analysis. CRC Press-Taylor & FrancisGoogle Scholar
  16. 16.
    Nuclear Threat Initiative: Osmium-187 Seized in Omsk, Russia (March 2, 2003).
  17. 17.
    Pajo L UO\(_2\) fuel pellet impurities, pellet surface roughness and n(\(^{18}\)O)/n( \(^{16}\)O) ratios applied to nuclear forensic science. PhD thesis, University of Helsinki. Accessed 24 Mar 2015
  18. 18.
    Ray I, Schubert A, Schenkel R, Koch L (2001) Nuclear forensic science - case histories and investigation methods at the institute for transuranium elements. IAEA Report IAEA-CN-86-82PGoogle Scholar
  19. 19.
    Richter S, Goldberg S (2003) Improved techniques for high accuracy isotope ratio measurements of nuclear materials using thermal ionization mass spectrometry. Int J Mass Spectrom 229(3):181–197. doi: 10.1016/S1387-3806(03)00338-5.
  20. 20.
    Sangster DF, Outridge PM, Davis WJ (2000) Stable lead isotope characteristics of lead ore deposits of environmental significance. Environ Rev 8(2):115–147. doi: 10.1139/a00-008.
  21. 21.
    Stanley FE, Stalcup AM, Spitz HB (2013) A brief introduction to analytical methods in nuclear forensics. J Radioanal Nucl Chem 293:1385–1393. doi: 10.1007/s10967-012-1927-3 CrossRefGoogle Scholar
  22. 22.
    Valone SM, Baskes MI, Rudin SP (2012) J Nucl Mat 422:20–26ADSCrossRefGoogle Scholar
  23. 23.
    Varga Z, Wallenius M, Mayer K, Keegan E, Millet S (2009) Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates. Anal Chem 81(20):8327–8334. doi: 10.1021/ac901100e. PMID: 19824713
  24. 24.
    Varga Z, Wallenius M, Mayer K, Meppen M (2011) Analysis of uranium ore concentrates for origin assessment. Proc Radiochim Acta 1:1–4. doi: 10.1524/rcpr.2011.0004 Google Scholar
  25. 25.
    Wallenius M, Morgenstern A, Nicholl A, Fiedler R, Apostolidis C, Mayer K (2001) Age determination of highly enriched uranium. In: IAEA symposium on international safeguards: verification and nuclear material security, Vienna, Austria IAEA-SM-367/5/07. Accessed 24 Mar 2015

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations