Advertisement

Arms Control and Treaty Verification

  • Edward C. MorseEmail author
Chapter
Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)

Abstract

Methods of detection unique to arms control and treaty verification are discussed here. The conditions and opportunities for detection in these enivronments are contrasted with portal monitoring and cargo screening environments. First, neutron multiplicity counting is covered, including both the technology involved and the mathematics required. Next, the Pu300, Pu600 and Pu900 plutonium analyses are explored. Next, neutron imaging methods are discussed from the historical perspective in the context of counting the number of warheads on a missile. The necessity for “information barriers” in this application is discussed. The use of anti-neutrino detectors to verify the operating power level of a nuclear reactor is also covered, and successful experiments of this technology are described. The dependence of the neutrino signal on the uranium-to-plutonium fission rate is discussed, and a simple analytical model for quantifying this effect is presented.

Keywords

Plastic Scintillator Spontaneous Fission Factorial Moment Fissile Material Organic Scintillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abe MC (1994) Reentry vehicle on-site inspection technology study. Technical Report, DNA-TR-94-22. http://www.dtic.mil/dtic/tr/fulltext/u2/a285960.pdf
  2. 2.
    Aleklett K, Nyman G, Rudstam G (1975) Beta-decay properties of strongly neutron-rich nuclei. Nucl Phys A 246(2):425–444. doi: 10.1016/0375-9474(75)90657-0. http://www.sciencedirect.com/science/article/pii/0375947475906570
  3. 3.
    Anderson HL, Fermi E, Szilard L (1939) Neutron production and absorption in uranium. Phys Rev 56:284–286. doi: 10.1103/PhysRev.56.284
  4. 4.
    Archer D, Gosnell T, Luke J, Nakae L (2001) Pu300, Pu600, and Pu900 systems. In: Technology R&D for arms control. U.S. Department of Energy National Nuclear Security Administration Defense Nuclear Nonproliferation Programs. http://fissilematerials.org/library/doe01b.pdf
  5. 5.
    Bazoma J, Boireau G, Bouvet L, Buck C, Bui V, Collin A, Communeau V, Cormon S, Coulloux G, Cribier M, Cucoanes A, Deschamp H, Dumonteil E, Durand V, Fallot M, Fechner M, Fischer V, Gaffiot J, Gautier M, Giot L, Guillon B, Guilloux G, Granelli R, Haser J, Kato Y, Lasserre T, Latron L, Legou P, Lenoir M, Letourneau A, Lhuillier D, Lindner M, Martino J, Mention G, Mercier G, Mueller T, Nghiem TA, Onillon A, Pedrol N, Pelzer J, Pequignot M, Piret Y, Pleurel N, Porta A, Prono G, Scola L, Starzinski P, Varignon C, Vilajosana T, Vivier M, Yermia F (2014) The Nucifer reactor neutrino monitor. In: IAEA Safeguards Symposium. https://www.iaea.org/safeguards/symposium/2014/home/eproceedings/sg2014-papers/000011.pdf
  6. 6.
    Bernstein A, Baldwin G, Boyer B, Goodman M, Learned J, Lund J, Reyna D, Svoboda R (2010) Nuclear security applications of antineutrino detectors: Current capabilities and future prospects. Sci Global Secur 18:3. doi: 10.1080/08929882.2010.529785
  7. 7.
    Böhnel K (1985) The effect of multiplication on the quantitative determination of spontaneously fissioning isotopes by neutron correlation analysis. Nucl Sci Eng 90(1). doi: 10.13182/NSE85-2
  8. 8.
    Byrd R, Auchampaugh G, Moss C, Feldman W (1991) Warhead counting using neutron scintillators: detector development, testing, and demonstration. In: Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, pp 1305–1309, vol 2. doi: 10.1109/NSSMIC.1991.259136
  9. 9.
    Croff AG, Bjerke MA, Morrison GW, Petrie LM (1978) Revised uranium-plutonium cycle PWR and BWR models for the ORIGEN computer code. Oak Ridge National Laboratory. doi: 10.2172/6787757. http://www.osti.gov/scitech/servlets/purl/6787757
  10. 10.
    Davis BR, Vogel P, Mann FM, Schenter RE (1979) Reactor antineutrino spectra and their application to antineutrino-induced reactions. Phys Rev C 19:2259–2266. doi: 10.1103/PhysRevC.19.2259
  11. 11.
    DeVolpi A (1987) Neutron radiographic techniques for nuclear arms control applications. In: Barton JP, Farny G, Person JL, Röttger H (eds) Neutron radiography. Springer, Netherlands, pp 805–807. doi: 10.1007/978-94-009-3871-7_99
  12. 12.
    Ensslin N, Krick M, Pickrell M, Reilly D, Stewart J (1991) Passive neutron multiplicity counting. In: Reilly D, Ensslin N, Smith, S Jr, Kreiner S (eds) Passive nondestructive assay of nuclear materials, vol LA-UR-07-1402. U.S. Nuclear Regulatory CommissionGoogle Scholar
  13. 13.
    Ensslin N, Harker WC, Krick MS, Langner DG, Pickrell MM, Stewart JE (1998) Application guide to neutron multiplicity counting. Los Alamos Manual, LA-13422-M. http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-13422-M
  14. 14.
    Ewing RI, Marlow KW (1990) A fast-neutron detector used in verification of the inf treaty. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 299(1):559–561. doi: 10.1016/0168-9002(90)90843-U. http://www.sciencedirect.com/science/article/pii/016890029090843U
  15. 15.
    Feldman W, Auchampaugh G, Byrd R (1991) A novel fast-neutron detector for space applications. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 306(1–2):350–365. doi: 10.1016/0168-9002(91)90342-N. http://www.sciencedirect.com/science/article/pii/016890029190342N
  16. 16.
    Hausladen P, Blackston M (2009) Passive and active fast-neutron imaging in support of AFCI safeguards campaign. Oak Ridge National Laboratory Technical Report, ORNL/TM-2009/210. http://info.ornl.gov/sites/publications/files/Pub21226.pdf
  17. 17.
    Johnson M, Doyle JE, Murphy C (2011) Recovering START institutional knowledge. Los Alamos National Laboratory Unclaasified Report, LA-UR-11-03284. http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-11-03284
  18. 18.
    Kuvshinnikov A, Mikaelyan L, Nikolaev S, Skorokhvatov M, Etenko A (1991) Measuring the \(\bar{\nu }_{\text{e}} + \text{ p } \rightarrow \text{ n } + \text{ e }^{+}\) cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor. JETP Lett 54:253–257Google Scholar
  19. 19.
    Mascarenhas N, Brennan J, Krenz K, Marleau P, Mrowka S (2009) Results with the neutron scatter camera. IEEE Trans Nucl Sci 56(3):1269–1273. doi: 10.1109/TNS.2009.2016659 ADSCrossRefGoogle Scholar
  20. 20.
    McDonald B, Seifert A, White T, Robinson S, Miller E, Jarman K, Misner A, Pitts WK (2011) Image-based verification: Some advantages, challenges, and algorithm-driven requirements. PNNL Report, PNNL-SA-80551. https://www.nti.org/media/pdfs/McDonaldetal2011_Image-based_Verif_Some_Adv_Chall_Algdriven_reqs.pdf?_=1439478341
  21. 21.
    Meissner C (2008) Antineutrino detectors improve reactor safeguards. Sci Technol Rev. https://str.llnl.gov/str/JulAug08/pdfs/07.08.4.pdf
  22. 22.
    Parker A (2006) Monitoring nuclear reactors with antineutrinos. Sci Technol Rev. https://str.llnl.gov/str/JanFeb06/pdfs/01_06.4.pdf
  23. 23.
    Vanier PE, Forman L, Norman DR (2009) Thermal neutron imaging in an active interrogation environment. Brookhaven National Laboratory Technical report, BNL-90269-2009-CP. https://www.bnl.gov/isd/documents/70294.pdf
  24. 24.
    Ziock K, Hailey C, Gosnell T, Lupton J, Harrison F (1992) A gamma-ray imager for arms control. IEEE Trans Nucl Sci 39(4):1046–1050. doi: 10.1109/23.159757 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations