Training Aspects of Marathon Running

  • Christoph ZinnerEmail author


Training for long distance running events such as marathon races need a well-designed training plan. The aim of this training should be to enhance physiological parameters which have been shown to influence long distance running performance. These important physiological parameters mainly include: maximal oxygen uptake (\({\dot{\text{V}}}{\text{O}}_{{2{\text{max}}}}\)), % of \({\dot{\text{V}}}{\text{O}}_{{2{\text{max}}}}\) at lactate threshold, and the running economy. The structure of applying training with different loads and/or intensities in series of training cycles seems to be critical to the final performance outcome of a runner. For successful marathon training a high amount of prolonged high-volume training is crucial. With a combination of prolonged high-volume training and low-volume high-intensity interval training important adaptations in essential physiological parameters can be reached and finally running performance enhancements. Therefore, a structured periodization of the content of training as well as the load of training over a longer period of time with a certain goal is mandatory for long term developments.


Intensity distribution Maximal oxygen uptake Periodization Training zones 


  1. Albracht K, Arampatzis A (2013) Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans. Eur J Appl Physiol 113(6):1605–1615. doi: 10.1007/s00421-012-2585-4 PubMedCrossRefGoogle Scholar
  2. Anderson T (1996) Biomechanics and running economy. Sports Med 22(2):76–89PubMedCrossRefGoogle Scholar
  3. Barnes KR, Kilding AE (2015) Strategies to improve running economy. Sports Med 45(1):37–56. doi: 10.1007/s40279-014-0246-y PubMedCrossRefGoogle Scholar
  4. Barnes KR, Hopkins WG, McGuigan MR, Kilding AE (2013a) Effects of different uphill interval-training programs on running economy and performance. Int J Sports Physiol Perform 8(6):639–647PubMedGoogle Scholar
  5. Barnes KR, Hopkins WG, McGuigan MR, Northuis ME, Kilding AE (2013b) Effects of resistance training on running economy and cross-country performance. Med Sci Sports Exerc 45(12):2322–2331. doi: 10.1249/MSS.0b013e31829af603 PubMedCrossRefGoogle Scholar
  6. Basset FA, Chouinard R, Boulay MR (2003) Training profile counts for time-to-exhaustion performance. Can J Appl Physiol 28(4):654–666PubMedCrossRefGoogle Scholar
  7. Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1):70–84PubMedCrossRefGoogle Scholar
  8. Belman MJ, Gaesser GA (1991) Exercise training below and above the lactate threshold in the elderly. Med Sci Sports Exerc 23(5):562–568PubMedCrossRefGoogle Scholar
  9. Berryman N, Maurel D, Bosquet L (2010) Effect of plyometric vs. dynamic weight training on the energy cost of running. J Strength Cond Res 24(7):1818–1825. doi: 10.1519/JSC.0b013e3181def1f5 PubMedCrossRefGoogle Scholar
  10. Billat LV (2001) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med 31(1):13–31PubMedCrossRefGoogle Scholar
  11. Billat VL, Flechet B, Petit B, Muriaux G, Koralsztein JP (1999) Interval training at VO2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc 31(1):156–163PubMedCrossRefGoogle Scholar
  12. Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP (2000) Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 81(3):188–196. doi: 10.1007/s004210050029 PubMedCrossRefGoogle Scholar
  13. Billat VL, Demarle A, Slawinski J, Paiva M, Koralsztein JP (2001a) Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc 33(12):2089–2097PubMedCrossRefGoogle Scholar
  14. Billat VL, Slawinksi J, Bocquet V, Chassaing P, Demarle A, Koralsztein JP (2001b) Very short (15 s–15 s) interval-training around the critical velocity allows middle-aged runners to maintain VO2max for 14 minutes. Int J Sports Med 22(3):201–208. doi: 10.1055/s-2001-16389 PubMedCrossRefGoogle Scholar
  15. Billat V, Demarle A, Paiva M, Koralsztein JP (2002) Effect of training on the physiological factors of performance in elite marathon runners (males and females). Int J Sports Med 23(5):336–341. doi: 10.1055/s-2002-33265 PubMedCrossRefGoogle Scholar
  16. Bompa TO (1999) Periodization training: theory and methodology, 4th edn. Human Kinetics, ChampaignGoogle Scholar
  17. Branch JD, Pate RR, Bourque SP (2000) Moderate intensity exercise training improves cardiorespiratory fitness in women. J Womens Health Gend Based Med 9(1):65–73. doi: 10.1089/152460900318984 PubMedCrossRefGoogle Scholar
  18. Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med 43(5):313–338. doi: 10.1007/s40279-013-0029-x PubMedCrossRefGoogle Scholar
  19. Cairns SP (2006) Lactic acid and exercise performance: culprit or friend? Sports Med 36(4):279–291PubMedCrossRefGoogle Scholar
  20. Cheng C-F, Cheng K-H, Lee Y-M, Huang H-W, Kuo Y-H, Lee H-J (2012) Improvement in running economy after 8 weeks of whole-body vibration training. J Strength Conditioning Res/Nat Strength Conditioning Assoc 26(12):3349–3357. doi: 10.1519/JSC.0b013e31824e0eb1 CrossRefGoogle Scholar
  21. Clausen JP (1977) Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev 57(4):779–815PubMedGoogle Scholar
  22. Coggan AR, Raguso CA, Williams BD, Sidossis LS, Gastaldelli A (1995) Glucose kinetics during high-intensity exercise in endurance-trained and untrained humans. J Appl Physiol 78(3):1203–1207PubMedGoogle Scholar
  23. Conley DL, Krahenbuhl GS (1980) Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 12(5):357–360PubMedCrossRefGoogle Scholar
  24. Conley DL et al (1984) Following Steve Scott: physiological changes accompanying training. Physician Sportsmed 12(1):103–106Google Scholar
  25. Cooper G (1997) Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med 48:13–23. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  26. Costill DL, Flynn MG, Kirwan JP, Houmard JA, Mitchell JB, Thomas R, Park SH (1988) Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 20(3):249–254PubMedCrossRefGoogle Scholar
  27. Costill DL, Thomas R, Robergs RA, Pascoe D, Lambert C, Barr S, Fink WJ (1991) Adaptations to swimming training: influence of training volume. Med Sci Sports Exerc 23(3):371–377PubMedCrossRefGoogle Scholar
  28. Coyle EF (1999) Physiological determinants of endurance exercise performance. J Sci Med Sport 2(3):181–189PubMedCrossRefGoogle Scholar
  29. Daniels J, Scardina N (1984) Interval training and performance. Sports Med 1(4):327–334PubMedCrossRefGoogle Scholar
  30. Denadai BS, Ortiz MJ, Greco CC, de Mello MT (2006) Interval training at 95 % and 100 % of the velocity at VO2 max: effects on aerobic physiological indexes and running performance. Appl Physiol Nutr Metab (Physiologie appliquée, nutrition et métabolisme) 31(6):737–743. doi: 10.1139/h06-080 Google Scholar
  31. di Prampero PE, Atchou G, Bruckner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol 55(3):259–266CrossRefGoogle Scholar
  32. Esteve-Lanao J, San Juan AF, Earnest CP, Foster C, Lucia A (2005) How do endurance runners actually train? Relationship with competition performance. Med Sci Sports Exerc 37(3):496–504PubMedCrossRefGoogle Scholar
  33. Esteve-Lanao J, Foster C, Seiler S, Lucia A (2007) Impact of training intensity distribution on performance in endurance athletes. J Strength Cond Res 21(3):943–949. doi: 10.1519/R-19725.1 PubMedGoogle Scholar
  34. Evertsen F, Medbo JI, Bonen A (2001) Effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers. Acta Physiol Scand 173(2):195–205. doi: 10.1046/j.1365-201X.2001.00871.x PubMedCrossRefGoogle Scholar
  35. Farrell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL (1993) Plasma lactate accumulation and distance running performance. 1979. Med Sci Sports Exerc 25(10):1091–1097 (discussion 1089–1090)Google Scholar
  36. Ferley DD, Osborn RW, Vukovich MD (2014) The effects of incline and level-grade high-intensity interval treadmill training on running economy and muscle power in well-trained distance runners. J Strength Conditioning Res/Nat Strength Conditioning Assoc 28(5):1298–1309. doi: 10.1519/jsc.0000000000000274 CrossRefGoogle Scholar
  37. Ferrauti A, Bergermann M, Fernandez-Fernandez J (2010) Effects of a concurrent strength and endurance training on running performance and running economy in recreational marathon runners. J Strength Conditioning Res/Nat Strength Conditioning Assoc 24(10):2770–2778. doi: 10.1519/JSC.0b013e3181d64e9c CrossRefGoogle Scholar
  38. Fohrenbach R, Mader A, Hollmann W (1987) Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int J Sports Med 8(1):11–18. doi: 10.1055/s-2008-1025633 PubMedCrossRefGoogle Scholar
  39. Foster C (1983) VO2max and training indices as determinants of competitive running performance. J Sports Sci 1:13–22CrossRefGoogle Scholar
  40. Foster C (1998) Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc 30(7):1164–1168PubMedCrossRefGoogle Scholar
  41. Foster C, Heiman KM, Esten PL, Brice G, Porcari J (2001) Differences in perceptions of training by coaches and athletes. S Afr J Sports Med 8:3–7Google Scholar
  42. Franch J, Madsen K, Djurhuus MS, Pedersen PK (1998) Improved running economy following intensified training correlates with reduced ventilatory demands. Med Sci Sports Exerc 30(8):1250–1256PubMedCrossRefGoogle Scholar
  43. Gibala MJ, Jones AM (2013) Physiological and performance adaptations to high-intensity interval training. Nestle Nutr Inst Workshop Ser 76:51–60. doi: 10.1159/000350256 PubMedCrossRefGoogle Scholar
  44. Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558(Pt 1):5–30. doi: 10.1113/jphysiol.2003.058701 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gledhill N, Cox D, Jamnik R (1994) Endurance athletes’ stroke volume does not plateau: major advantage is diastolic function. Med Sci Sports Exerc 26(9):1116–1121PubMedCrossRefGoogle Scholar
  46. Green HJ, Jones LL, Hughson RL, Painter DC, Farrance BW (1987) Training-induced hypervolemia: lack of an effect on oxygen utilization during exercise. Med Sci Sports Exerc 19(3):202–206PubMedCrossRefGoogle Scholar
  47. Green HJ, Jones LL, Painter DC (1990) Effects of short-term training on cardiac function during prolonged exercise. Med Sci Sports Exerc 22(4):488–493PubMedCrossRefGoogle Scholar
  48. Green HJ, Jones S, Ball-Burnett M, Fraser I (1991) Early adaptations in blood substrates, metabolites, and hormones to prolonged exercise training in man. Can J Physiol Pharmacol 69(8):1222–1229PubMedCrossRefGoogle Scholar
  49. Hagan RD, Smith MG, Gettman LR (1981) Marathon performance in relation to maximal aerobic power and training indices. Med Sci Sports Exerc 13(3):185–189PubMedCrossRefGoogle Scholar
  50. Hagerman FC, Staron RS (1983) Seasonal variables among physiological variables in elite oarsmen. Can J Appl Sport Sci 8(3):143–148PubMedGoogle Scholar
  51. Hartmann U, Mader A, Hollmann W (1990) Heart rate and lactate during endurance training programs in rowing and its relation to the duration of exercise by top elite rowers. FISA Coach 1:1–4Google Scholar
  52. Helgerud J, Engen LC, Wisloff U, Hoff J (2001) Aerobic endurance training improves soccer performance. Med Sci Sports Exerc 33(11):1925–1931PubMedCrossRefGoogle Scholar
  53. Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39(4):665–671. doi: 10.1249/mss.0b013e3180304570 PubMedCrossRefGoogle Scholar
  54. Henriksson J (1992) Effects of physical training on the metabolism of skeletal muscle. Diabetes Care 15(11):1701–1711PubMedCrossRefGoogle Scholar
  55. Henritze J, Weltman A, Schurrer RL, Barlow K (1985) Effects of training at and above the lactate threshold on the lactate threshold and maximal oxygen uptake. Eur J Appl Physiol Occup Physiol 54(1):84–88PubMedCrossRefGoogle Scholar
  56. Hewson DJ, Hopkins WG (1995) Prescribed and self-reported seasonal training of distance runners. J Sports Sci 13(6):463–470. doi: 10.1080/02640419508732263 PubMedCrossRefGoogle Scholar
  57. Hickson RC, Hagberg JM, Ehsani AA, Holloszy JO (1981) Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc 13(1):17–20PubMedGoogle Scholar
  58. Hill DW, Rowell AL (1997) Responses to exercise at the velocity associated with VO2max. Med Sci Sports Exerc 29(1):113–116PubMedCrossRefGoogle Scholar
  59. Hoppeler H, Weibel ER (2000) Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 168(4):445–456PubMedCrossRefGoogle Scholar
  60. Hudlicka O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72(2):369–417PubMedGoogle Scholar
  61. Ingham SA, Carter H, Whyte GP, Doust JH (2008) Physiological and performance effects of low- versus mixed-intensity rowing training. Med Sci Sports Exerc 40(3):579–584. doi: 10.1249/MSS.0b013e31815ecc6a PubMedCrossRefGoogle Scholar
  62. Issurin V (2008) Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness 48(1):65–75PubMedGoogle Scholar
  63. Ivy JL, Withers RT, Van Handel PJ, Elger DH, Costill DL (1980) Muscle respiratory capacity and fiber type as determinants of the lactate threshold. J Appl Physiol Respir Environ Exerc Physiol 48(3):523–527PubMedGoogle Scholar
  64. Johnston QTJKRVNB (1997) Strength training in female distance runners: impact on running economy. J Strength Conditioning Res 11(4):224–229Google Scholar
  65. Jones AM (2006) The physiology of the women’s world record holder for the women’s marathon. Int J Sports Sci Coaching 1(2):101–116CrossRefGoogle Scholar
  66. Joyner MJ, Ruiz A, Lucia A (2011) Last word on viewpoint: the two-hour marathon: who and when? J Appl Physiol 110 (1)Google Scholar
  67. Karlsson J, Nordesjo LO, Saltin B (1974) Muscle glycogen utilization during exercise after physical training. Acta Physiol Scand 90(1):210–217PubMedCrossRefGoogle Scholar
  68. Kraemer WJ, Fleck SJ, Evans WJ (1996) Strength and power training: physiological mechanisms of adaptation. Exerc Sport Sci Rev 24:363–397PubMedCrossRefGoogle Scholar
  69. Laffite LP, Mille-Hamard L, Koralsztein JP, Billat VL (2003) The effects of interval training on oxygen pulse and performance in supra-threshold runs. Arch Physiol Biochem 111(3):202–210. doi: 10.1076/apab. PubMedCrossRefGoogle Scholar
  70. Lake MJ, Cavanagh PR (1996) Six weeks of training does not change running mechanics or improve running economy. Med Sci Sports Exerc 28(7):860–869PubMedCrossRefGoogle Scholar
  71. Laursen PB (2010) Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports 20:1–10. doi: 10.1111/j.1600-0838.2010.01184.x PubMedCrossRefGoogle Scholar
  72. Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32(1):53–73PubMedCrossRefGoogle Scholar
  73. Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG (2002) Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc 34(11):1801–1807. doi: 10.1249/01.MSS.0000036691.95035.7D PubMedCrossRefGoogle Scholar
  74. Londeree BR (1997) Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc 29(6):837–843PubMedCrossRefGoogle Scholar
  75. Lucia A, Olivan J, Bravo J, Gonzalez-Freire M, Foster C (2008) The key to top-level endurance running performance: a unique example. Br J Sports Med 42(3):172–174 (discussion 174). doi: 10.1136/bjsm.2007.040725 Google Scholar
  76. MacDougall JD (1977) The anaerobic threshold: its significance for the endurance athlete. Can J Appl Sport Sci 2:137–140Google Scholar
  77. McKenzie DC (1999) Markers of excessive exercise. Can J Appl Physiol 24(1):66–73PubMedCrossRefGoogle Scholar
  78. McMillan K, Helgerud J, Macdonald R, Hoff J (2005) Physiological adaptations to soccer specific endurance training in professional youth soccer players. Br J Sports Med 39(5):273–277. doi: 10.1136/bjsm.2004.012526 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Midgley AW, McNaughton LR, Jones AM (2007) Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med (Auckland, NZ) 37(10):857–880Google Scholar
  80. Mikesell KA, Dudley GA (1984) Influence of intense endurance training on aerobic power of competitive distance runners. Med Sci Sports Exerc 16(4):371–375PubMedCrossRefGoogle Scholar
  81. Mikkola J, Vesterinen V, Taipale R, Capostagno B, Häkkinen K, Nummela A (2011) Effect of resistance training regimens on treadmill running and neuromuscular performance in recreational endurance runners. J Sports Sci 29(13):1359–1371. doi: 10.1080/02640414.2011.589467 PubMedCrossRefGoogle Scholar
  82. Milanovic Z, Sporis G, Weston M (2015) Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med 45(10):1469–1481. doi: 10.1007/s40279-015-0365-0 PubMedCrossRefGoogle Scholar
  83. Millet GP, Jaouen B, Borrani F, Candau R (2002) Effects of concurrent endurance and strength training on running economy and VO2 kinetics. Med Sci Sports Exerc 34(8):1351–1359PubMedCrossRefGoogle Scholar
  84. Morgan DW, Martin PE, Krahenbuhl GS (1989) Factors affecting running economy. Sports Med (Auckland, NZ) 7(5):310–330Google Scholar
  85. Nelson RC, Gregor RJ (1976) Biomechanics of distance running: a longitudinal study. Res Q 47(3):417–428PubMedGoogle Scholar
  86. Noakes TD, Myburgh KH, Schall R (1990) Peak treadmill running velocity during the VO2max test predicts running performance. J Sports Sci 8(1):35–45. doi: 10.1080/02640419008732129 PubMedCrossRefGoogle Scholar
  87. Ouellet Y, Poh SC, Becklake MR (1969) Circulatory factors limiting maximal aerobic exercise capacity. J Appl Physiol 27(6):874–880PubMedGoogle Scholar
  88. Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H (1999) Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 86(5):1527–1533PubMedGoogle Scholar
  89. Pate RR, Kriska A (1984) Physiological basis of the sex difference in cardiorespiratory endurance. Sports Med 1(2):87–98PubMedCrossRefGoogle Scholar
  90. Piacentini MF, De Ioannon G, Comotto S, Spedicato A, Vernillo G, La Torre A (2013) Concurrent strength and endurance training effects on running economy in master endurance runners. J Strength Cond Res 27(8):2295–2303. doi: 10.1519/JSC.0b013e3182794485 PubMedCrossRefGoogle Scholar
  91. Poole DC, Gaesser GA (1985) Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol 58(4):1115–1121PubMedGoogle Scholar
  92. Robinson DM, Robinson SM, Hume PA, Hopkins WG (1991) Training intensity of elite male distance runners. Med Sci Sports Exerc 23(9):1078–1082PubMedCrossRefGoogle Scholar
  93. Rodas G, Ventura JL, Cadefau JA, Cusso R, Parra J (2000) A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol 82(5–6):480–486. doi: 10.1007/s004210000223 PubMedCrossRefGoogle Scholar
  94. Saltin B, Rowell LB (1980) Functional adaptations to physical activity and inactivity. Fed Proc 39(5):1506–1513PubMedGoogle Scholar
  95. Saunders PU, Pyne DB, Telford RD, Hawley JA (2004) Factors affecting running economy in trained distance runners. Sports Med (Auckland, NZ) 34(7):465–485Google Scholar
  96. Saunders PU, Telford RD, Pyne DB, Peltola EM, Cunningham RB, Gore CJ, Hawley JA (2006) Short-term plyometric training improves running economy in highly trained middle and long distance runners. J Strength Conditioning Res/Nat Strength Conditioning Assoc 20(4):947–954. doi: 10.1519/r-18235.1 Google Scholar
  97. Sedano S, Marín PJ, Cuadrado G, Redondo JC (2013) Concurrent training in elite male runners: the influence of strength versus muscular endurance training on performance outcomes. J Strength Conditioning Res/Nat Strength Conditioning Assoc 27(9):2433–2443. doi: 10.1519/JSC.0b013e318280cc26 CrossRefGoogle Scholar
  98. Seiler S (2010) What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform 5(3):276–291PubMedGoogle Scholar
  99. Seiler KS, Kjerland GO (2006) Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports 16(1):49–56. doi: 10.1111/j.1600-0838.2004.00418.x PubMedCrossRefGoogle Scholar
  100. Seiler S, Tønnessen E (2009) Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience 13:32–54Google Scholar
  101. Seiler S, Haugen O, Kuffel E (2007) Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc 39(8):1366–1373. doi: 10.1249/mss.0b013e318060f17d PubMedCrossRefGoogle Scholar
  102. Sjodin B, Jacobs I (1981) Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 2(1):23–26. doi: 10.1055/s-2008-1034579 PubMedCrossRefGoogle Scholar
  103. Sjodin B, Svedenhag J (1985) Applied physiology of marathon running. Sports medicine 2(2):83–99PubMedCrossRefGoogle Scholar
  104. Sjödin B, Jacobs I, Svedenhag J (1982) Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol 49(1):45–57CrossRefGoogle Scholar
  105. Skovgaard C, Christensen PM, Larsen S, Andersen TR, Thomassen M, Bangsbo J (2014) Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners. J Appl Physiol 117(10):1097–1109. doi: 10.1152/japplphysiol.01226.2013 [pii]PubMedCrossRefGoogle Scholar
  106. Slawinski J, Demarle A, Koralsztein JP, Billat V (2001) Effect of supra-lactate threshold training on the relationship between mechanical stride descriptors and aerobic energy cost in trained runners. Arch Physiol Biochem 109(2):110–116. doi: 10.1076/apab. PubMedCrossRefGoogle Scholar
  107. Smith DJ, Wenger HA (1981) The 10 day aerobic mini-cycle: the effects of interval or continuous training at two different intensities. J Sports Med Phys Fitness 21(4):390–394PubMedGoogle Scholar
  108. Smith TP, McNaughton LR, Marshall KJ (1999) Effects of 4-wk training using Vmax/Tmax on VO2max and performance in athletes. Med Sci Sports Exerc 31(6):892–896PubMedCrossRefGoogle Scholar
  109. Smith TP, Coombes JS, Geraghty DP (2003) Optimising high-intensity treadmill training using the running speed at maximal O2 uptake and the time for which this can be maintained. Eur J Appl Physiol 89(3–4):337–343. doi: 10.1007/s00421-003-0806-6 PubMedCrossRefGoogle Scholar
  110. Sperlich B, Engel F, Zinner C (2015) Interventions to modify running economy in middle and long distance runners. Dt Zeitschr Sportmed 66:229–234CrossRefGoogle Scholar
  111. Spurrs RW, Murphy AJ, Watsford ML (2003) The effect of plyometric training on distance running performance. Eur J Appl Physiol 89(1):1–7. doi: 10.1007/s00421-002-0741-y PubMedCrossRefGoogle Scholar
  112. Stanton R, Reaburn PR, Humphries B (2004) The effect of short-term Swiss ball training on core stability and running economy. J Strength Conditioning Res/Nat Strength Conditioning Assoc 18(3):522–528. doi: 10.1519/1533-4287(2004)18<522:teossb>;2 Google Scholar
  113. Steinacker JM (1993) Physiological aspects of training in rowing. Int J Sports Med 14(Suppl 1):S3–10PubMedGoogle Scholar
  114. Stoggl T, Sperlich B (2014) Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol 5:33. doi: 10.3389/fphys.2014.00033 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Stoggl TL, Sperlich B (2015) The training intensity distribution among well-trained and elite endurance athletes. Front Physiol 6:295. doi: 10.3389/fphys.2015.00295 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Svedenhag J, Sjödin B (1985) Physiological characteristics of elite male runners in and off-season. Can J Appl Sport Sci (Journal canadien des sciences appliquées au sport) 10(3):127–133Google Scholar
  117. Swain DP, Franklin BA (2002) VO2 reserve and the minimal intensity for improving cardiorespiratory fitness. Med Sci Sports Exerc 34(1):152–157PubMedCrossRefGoogle Scholar
  118. Tabata I, Irisawa K, Kouzaki M, Nishimura K, Ogita F, Miyachi M (1997) Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 29(3):390–395PubMedCrossRefGoogle Scholar
  119. Taipale RS, Mikkola J, Nummela A, Vesterinen V, Capostagno B, Walker S, Gitonga D, Kraemer WJ, Hakkinen K (2010) Strength training in endurance runners. Int J Sports Med 31(7):468–476. doi: 10.1055/s-0029-1243639 PubMedCrossRefGoogle Scholar
  120. Taipale RS, Mikkola J, Vesterinen V, Nummela A, Häkkinen K (2013) Neuromuscular adaptations during combined strength and endurance training in endurance runners: maximal versus explosive strength training or a mix of both. Eur J Appl Physiol 113(2):325–335. doi: 10.1007/s00421-012-2440-7 PubMedCrossRefGoogle Scholar
  121. Tanaka K, Matsuura Y (1984) Marathon performance, anaerobic threshold, and onset of blood lactate accumulation. J Appl Physiol Respir Environ Exerc Physiol 57(3):640–643PubMedGoogle Scholar
  122. Tanaka K, Watanabe H, Konishi Y, Mitsuzono R, Sumida S, Tanaka S, Fukuda T, Nakadomo F (1986) Longitudinal associations between anaerobic threshold and distance running performance. Eur J Appl Physiol Occup Physiol 55(3):248–252PubMedCrossRefGoogle Scholar
  123. Turner AM, Owings M, Schwane JA (2003) Improvement in running economy after 6 weeks of plyometric training. J Strength Conditioning Res/Nat Strength Conditioning Assoc 17(1):60–67Google Scholar
  124. Viru A (1984) The mechanism of training effects: a hypothesis. Int J Sports Med 5(5):219–227. doi: 10.1055/s-2008-1025909 PubMedCrossRefGoogle Scholar
  125. Weltman A, Seip RL, Snead D, Weltman JY, Haskvitz EM, Evans WS, Veldhuis JD, Rogol AD (1992) Exercise training at and above the lactate threshold in previously untrained women. Int J Sports Med 13(3):257–263. doi: 10.1055/s-2007-1021263 PubMedCrossRefGoogle Scholar
  126. Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 3(5):346–356PubMedCrossRefGoogle Scholar
  127. Wenger HA, Macnab RB (1975) Endurance training: the effects of intensity, total work, duration and initial fitness. J Sports Med Phys Fitness 15(3):199–211PubMedGoogle Scholar
  128. Wilkinson DM (1999) Training for middle and long-distance running. In: Fallowfield JL, Wilkinson DM (eds) Improving sports performance in middle and long-distance running. Wiley, Chichester, pp 69–98Google Scholar
  129. Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA (2008) Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol 105(5):1462–1470. doi: 10.1152/japplphysiol.90882.2008 PubMedCrossRefGoogle Scholar
  130. Yoshida T, Udo M, Chida M, Ichioka M, Makiguchi K, Yamaguchi T (1990) Specificity of physiological adaptation to endurance training in distance runners and competitive walkers. Eur J Appl Physiol 61(3–4):197–201CrossRefGoogle Scholar
  131. Zapico AG, Calderon FJ, Benito PJ, Gonzalez CB, Parisi A, Pigozzi F, Di Salvo V (2007) Evolution of physiological and haematological parameters with training load in elite male road cyclists: a longitudinal study. J Sports Med Phys Fitness 47(2):191–196PubMedGoogle Scholar
  132. Zhou B, Conlee RK, Jensen R, Fellingham GW, George JD, Fisher AG (2001) Stroke volume does not plateau during graded exercise in elite male distance runners. Med Sci Sports Exerc 33(11):1849–1854PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Sport ScienceJulius Maximilians University WürzburgWürzburgGermany

Personalised recommendations