Skip to main content

“Foetal–Maternal Conflicts” and Adverse Outcomes in Human Pregnancies

  • Chapter
  • First Online:
Evolutionary Thinking in Medicine

Abstract

During normal pregnancy, there is a fine equilibrium between foetal and maternal interests. Some pregnancy complications appear to arise from a conflict of interest between the foetuses, which is trying to maximize the supply of nutrients from the mother, and the latter who is trying to preserve her reproductive future. This chapter reviews accumulating evidence to support the hypothesis that abnormal foetal–maternal interactions may be the basis of some pregnancy complications associated with abnormal foetal growth, foetal death and maternal complication including pre-eclampsia, gestational diabetes and thrombophilia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haig D (1993) Genetic conflicts in human pregnancy. Q Rev Biol 68:495–532

    Article  CAS  PubMed  Google Scholar 

  2. Pijnenborg R, Vercruysse L, Hanssens M (2008) Fetal-maternal conflict, trophoblast invasion, preeclampsia, and the red queen. Hypertens Pregnancy 27:183–196

    Article  PubMed  Google Scholar 

  3. Page EW (1939) The relation between hydatid moles, relative ischemia of the gravid uterus, and the placental origin of eclampsia. Am J Obstet Gynecol 37:291–293

    Google Scholar 

  4. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948

    Article  PubMed  Google Scholar 

  5. Fowden AL, Coan PM, Angiolini E, Burton GJ, Constancia M (2011) Imprinted genes and the epigenetic regulation of placental phenotype. Prog Biophys Mol Biol 106:281–288

    Article  CAS  PubMed  Google Scholar 

  6. Espinoza J, Romero R, Mee KY, Kusanovic JP, Hassan S, Erez O (2006) Normal and abnormal transformation of the spiral arteries during pregnancy. J Perinat Med 34:447–458

    Article  PubMed  Google Scholar 

  7. Pijnenborg R, Vercruysse L, Hanssens M (2006) The uterine spiral arteries in human pregnancy: Facts and controversies. Placenta 27:939–958

    Article  CAS  PubMed  Google Scholar 

  8. Burton GJ, Woods AW, Jauniaux E, Kingdom JC (2009) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30:473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burton GJ, Yung HW (2011) Endoplasmic reticulum stress in the pathogenesis of early-onset pre-eclampsia. Pregnancy Hypertens 1:72–78

    PubMed  PubMed Central  Google Scholar 

  10. Burton GJ, Jauniaux E (2004) Placental oxidative stress: From miscarriage to preeclampsia. J Soc Gynecol Investig 11:342–352

    Article  CAS  PubMed  Google Scholar 

  11. Olofsson P, Laurini RN, Marsal KA (1993) High uterine artery pulsatility index reflects a defective development of placental bed spiral arteries in pregnancies complicated by hypertension and fetal growth retardation. Eur J Obstet Gynecol Reprod Biol 49:161–168

    Google Scholar 

  12. Sagol S, Ozkinay E, Oztekin K, Ozdemir N (1999) The comparison of uterine artery doppler velocimetry with the histopathology of the placental bed. Aust N Z J Obstet Gynaecol 39:324–329

    Article  CAS  PubMed  Google Scholar 

  13. Aardema MW, Oosterhof H, Timmer A, van RI, Aarnoudse JG (2001) Uterine artery doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta 22:405–411

    Google Scholar 

  14. Kim YM, Chaiworapongsa T, Gomez R, Bujold E, Yoon BH, Rotmensch S (2002) Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am J Obstet Gynecol 187:1137–1142

    Article  PubMed  Google Scholar 

  15. Kim YM, Bujold E, Chaiworapongsa T, Gomez R, Yoon BH, Thaler HT (2003) Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gynecol 189:1063–1069

    Article  PubMed  Google Scholar 

  16. Lin S, Shimizu I, Suehara N, Nakayama M, Aono T (1995) Uterine artery doppler velocimetry in relation to trophoblast migration into the myometrium of the placental bed. Obstet Gynecol 85:760–765

    Article  CAS  PubMed  Google Scholar 

  17. Madazli R, Somunkiran A, Calay Z, Ilvan S, Aksu MF (2003) Histomorphology of the placenta and the placental bed of growth restricted foetuses and correlation with the doppler velocimetries of the uterine and umbilical arteries. Placenta 24:510–516

    Article  CAS  PubMed  Google Scholar 

  18. Avagliano L, Bulfamante GP, Morabito A, Marconi AM (2011) Abnormal spiral artery remodelling in the decidual segment during pregnancy: From histology to clinical correlation. J Clin Pathol 64:1064–1068

    Article  PubMed  Google Scholar 

  19. Wu RT, Shyu MK, Lee CN, Wu CC, Hwa HL, Lin CJ (1995) Sonographic manifestation and doppler blood flow study in fetal triploidy syndrome: Report of two cases. J Ultrasound Med 14:555–558

    CAS  PubMed  Google Scholar 

  20. Charalambous M, Smith FM, Bennett WR, Crew TE, Mackenzie F, Ward A (2003) Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Proc Natl Acad Sci USA 100:8292–8297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuzmina IY, Hubina-Vakulik GI, Burton GJ (2005) Placental morphometry and doppler flow velocimetry in cases of chronic human fetal hypoxia. Eur J Obstet Gynecol Reprod Biol 120:139–145

    Article  PubMed  Google Scholar 

  22. Prefumo F, Sebire NJ, Thilaganathan B (2004) Decreased endovascular trophoblast invasion in first trimester pregnancies with high-resistance uterine artery doppler indices. Hum Reprod 19:206–209

    Article  CAS  PubMed  Google Scholar 

  23. Voigt HJ, Becker V (1992) Doppler flow measurements and histomorphology of the placental bed in uteroplacental insufficiency. J Perinat Med 20:139–147

    Article  CAS  PubMed  Google Scholar 

  24. Moldenhauer JS, Stanek J, Warshak C, Khoury J, Sibai B (2003) The frequency and severity of placental findings in women with preeclampsia are gestational age dependent. Am J Obstet Gynecol 189:1173–1177

    Article  PubMed  Google Scholar 

  25. Ogge G, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP, Yeo L (2011) Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J Perinat Med

    Google Scholar 

  26. Benirschke K, Kaufmann P, Baergen R (2006) Pathology of the human placenta. Springer, New York

    Google Scholar 

  27. Espinoza J, Uckele JE, Starr RA, Seubert DE, Espinoza AF, Berry SM (2010) Angiogenic imbalances: The obstetric perspective. Am J Obstet Gynecol 203:17–18

    Article  PubMed  Google Scholar 

  28. Sandrim VC, Palei AC, Cavalli RC, Araujo FM, Ramos ES, Duarte G (2009) Vascular endothelial growth factor genotypes and haplotypes are associated with pre-eclampsia but not with gestational hypertension. Mol Hum Reprod 15:115–120

    Article  CAS  PubMed  Google Scholar 

  29. Burton GJ, Charnock-Jones DS, Jauniaux E (2009) Regulation of vascular growth and function in the human placenta. Reproduction 138:895–902

    Article  CAS  PubMed  Google Scholar 

  30. Espinoza J, Espinoza AF (2011) Pre-eclampsia: A maternal manifestation of a fetal adaptive response? Ultrasound Obstet Gynecol 38:367–370

    Article  CAS  PubMed  Google Scholar 

  31. Espinoza J, Espinoza AF, Power GG (2011) High fetal plasma adenosine concentration: A role for the fetus in preeclampsia? Am J Obstet Gynecol

    Google Scholar 

  32. Espinoza J, Espinoza AF, Power GG (2011) High fetal plasma adenosine: A role for the fetus in preeclampsia? Am J Obstet Gynecol. doi:10.1016/j.ajog.2011.06.034

    Google Scholar 

  33. Slegel P, Kitagawa H, Maguire MH (1988) Determination of adenosine in fetal perfusates of human placental cotyledons using fluorescence derivatization and reversed-phase high-performance liquid chromatography. Anal Biochem 171:124–134

    Article  CAS  PubMed  Google Scholar 

  34. George EM, Cockrell K, Adair TH, Granger JP (2010) Regulation of sFlt-1 and VEGF secretion by adenosine under hypoxic conditions in rat placental villous explants. Am J Physiol Regul Integr Comp Physiol 299:R1629–R1633

    Google Scholar 

  35. Gogia N, Machin GA (2008) Maternal thrombophilias are associated with specific placental lesions. Pediatr Dev Pathol 11:424–429

    Article  CAS  PubMed  Google Scholar 

  36. Sebire NJ, Backos M, Goldin RD, Regan L (2002) Placental massive perivillous fibrin deposition associated with antiphospholipid antibody syndrome. BJOG 109:570–573

    Article  CAS  PubMed  Google Scholar 

  37. Redline RW (2006) Thrombophilia and placental pathology. Clin Obstet Gynecol 49:885–894

    Article  PubMed  Google Scholar 

  38. Arias F, Romero R, Joist H, Kraus FT (1998) Thrombophilia: A mechanism of disease in women with adverse pregnancy outcome and thrombotic lesions in the placenta. J Matern Fetal Med 7:277–286

    Article  CAS  PubMed  Google Scholar 

  39. Ariel I, Anteby E, Hamani Y, Redline RW (2004) Placental pathology in fetal thrombophilia. Hum Pathol 35:729–733

    Article  PubMed  Google Scholar 

  40. Kupferminc MJ, Many A, Bar-Am A, Lessing JB, Ascher-Landsberg J (2002) Mid-trimester severe intrauterine growth restriction is associated with a high prevalence of thrombophilia. BJOG 109:1373–1376

    Article  PubMed  Google Scholar 

  41. Paidas MJ, Ku DH, Arkel YS (2004) Screening and management of inherited thrombophilias in the setting of adverse pregnancy outcome. Clin Perinatol 31:783–805

    Google Scholar 

  42. Kupferminc MJ, Rimon E, Ascher-Landsberg J, Lessing JB, Many A (2004) Perinatal outcome in women with severe pregnancy complications and multiple thrombophilias. J Perinat Med 32:225–227

    Article  PubMed  Google Scholar 

  43. Lindqvist PG, Dahlback B (2008) Carriership of Factor V Leiden and evolutionary selection advantage. Curr Med Chem 15:1541–1544

    Article  CAS  PubMed  Google Scholar 

  44. Lindqvist PG, Svensson PJ, Dahlback B, Marsal K (1998) Factor V Q506 mutation (activated protein C resistance) associated with reduced intrapartum blood loss–a possible evolutionary selection mechanism. Thromb Haemost 79:69–73

    CAS  PubMed  Google Scholar 

  45. Rasmussen S, Irgens LM (2003) Fetal growth and body proportion in preeclampsia. Obstet Gynecol 101:575–583

    PubMed  Google Scholar 

  46. Aardema MW, Saro MC, Lander M, De Wolf BT, Oosterhof H, Aarnoudse JG (2004) Second trimester doppler ultrasound screening of the uterine arteries differentiates between subsequent normal and poor outcomes of hypertensive pregnancy: Two different pathophysiological entities? Clin Sci (Lond) 106:377–382

    Article  CAS  Google Scholar 

  47. Soto E, Romero R, Kusanovic JP, Ogge G, Hussein Y, Yeo L (2011) Late-onset preeclampsia is associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without placental lesions consistent with maternal underperfusion. J Matern Fetal Neonatal Med

    Google Scholar 

  48. Odegard RA, Vatten LJ, Nilsen ST, Salvesen KA, Austgulen R (2000) Preeclampsia and fetal growth. Obstet Gynecol 96:950–955

    CAS  PubMed  Google Scholar 

  49. Xiong X, Demianczuk NN, Buekens P, Saunders LD (2000) Association of preeclampsia with high birth weight for age. Am J Obstet Gynecol 183:148–155

    Article  CAS  PubMed  Google Scholar 

  50. Xiong X, Fraser WD (2004) Impact of pregnancy-induced hypertension on birthweight by gestational age. Paediatr Perinat Epidemiol 18:186–191

    Article  PubMed  Google Scholar 

  51. Rasmussen S, Irgens LM, Espinoza J (2014) Maternal obesity and excess of fetal growth in pre-eclampsia. BJOG 121:1351–1358

    Article  CAS  PubMed  Google Scholar 

  52. Rasmussen S, Espinoza J, Lee W, Martin SR, Belfort MA (2014) Re: Customized growth curves for identification of large-for-gestational age neonates in pre-eclamptic women. Ultrasound Obstet Gynecol 43:165–169

    Google Scholar 

  53. Espinoza J, Lee W, Martin SR, Belfort MA (2014) Customized growth curves for identification of large-for-gestational age neonates in pre-eclamptic women. Ultrasound Obstet Gynecol 43:165–169

    Article  CAS  PubMed  Google Scholar 

  54. von Dadelszen P, Ornstein MP, Bull SB, Logan AG, Koren G, Magee LA (2000) Fall in mean arterial pressure and fetal growth restriction in pregnancy hypertension: A meta-analysis. Lancet 355:87–92

    Article  Google Scholar 

  55. Romero R (1996) Prenatal medicine: The child is the father of the man. Prenat Neonatal Med 1:8–11

    Google Scholar 

  56. Ott WJ (1988) The diagnosis of altered fetal growth. Obstet Gynecol Clin North Am 15:237–263

    CAS  PubMed  Google Scholar 

  57. Deter RL, Rossavik IK, Harrist RB (1988) Development of individual growth curve standards for estimated fetal weight: I Weight estimation procedure. J Clin Ultrasound 16:215–225

    Article  CAS  PubMed  Google Scholar 

  58. Ott WJ (1993) Intrauterine growth retardation and preterm delivery. Am J Obstet Gynecol 168:1710–1717

    Article  CAS  PubMed  Google Scholar 

  59. Zeitlin J, Ancel PY, Saurel-Cubizolles MJ, Papiernik E (2000) The relationship between intrauterine growth restriction and preterm delivery: An empirical approach using data from a European case-control study. BJOG 107:750–758

    Article  CAS  PubMed  Google Scholar 

  60. Goldenberg RL, Nelson KG, Koski JF, Cutter GR (1985) Low birth weight, intrauterine growth retardation, and preterm delivery. Am J Obstet Gynecol 152:980–984

    Article  CAS  PubMed  Google Scholar 

  61. Bukowski R, Gahn D, Denning J, Saade G (2001) Impairment of growth in fetuses destined to deliver preterm. Am J Obstet Gynecol 185:463–467

    Article  CAS  PubMed  Google Scholar 

  62. Secher NJ, Kern HP, Thomsen BL, Keiding N (1987) Growth retardation in preterm infants. Br J Obstet Gynaecol 94:115–120

    Article  CAS  PubMed  Google Scholar 

  63. Morken NH, Kallen K, Jacobsson B (2006) Fetal growth and onset of delivery: A nationwide population-based study of preterm infants. Am J Obstet Gynecol 195:154–161

    Article  PubMed  Google Scholar 

  64. Mercer BM, Merlino AA, Milluzzi CJ, Moore JJ (2008) Small fetal size before 20 weeks’ gestation: Associations with maternal tobacco use, early preterm birth, and low birthweight. Am J Obstet Gynecol 198:673–677

    Article  PubMed  Google Scholar 

  65. Hediger ML, Scholl TO, Schall JI, Miller LW, Fischer RL (1995) Fetal growth and the etiology of preterm delivery. Obstet Gynecol 85:175–182

    Article  CAS  PubMed  Google Scholar 

  66. MacGregor SN, Sabbagha RE, Tamura RK, Pielet BW, Feigenbaum SL (1988) Differing fetal growth patterns in pregnancies complicated by preterm labor. Obstet Gynecol 72:834–837

    CAS  PubMed  Google Scholar 

  67. Odibo AO, Cahill AG, Odibo L, Roehl K, Macones GA (2011) Prediction of intrauterine fetal death in small-forgestational-age fetuses: Impact of including ultrasound biometry in customized models. Ultrasound Obstet Gynecol

    Google Scholar 

  68. Garite TJ, Clark R, Thorp JA (2004) Intrauterine growth restriction increases morbidity and mortality among premature neonates. Am J Obstet Gynecol 191:481–487

    Article  PubMed  Google Scholar 

  69. Aucott SW, Donohue PK, Northington FJ (2004) Increased morbidity in severe early intrauterine growth restriction. J Perinatol 24:435–440

    Article  PubMed  Google Scholar 

  70. Bernstein IM, Horbar JD, Badger GJ, Ohlsson A, Golan A (2000) The vermont oxford network. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. Am J Obstet Gynecol 182:198–206

    Article  CAS  PubMed  Google Scholar 

  71. Hemming K, Hutton JL, Bonellie S (2009) A comparison of customized and population-based birth-weight standards: The influence of gestational age. Eur J Obstet Gynecol Reprod.Biol 146:41–45

    Google Scholar 

  72. Zhang X, Platt RW, Cnattingius S, Joseph KS, Kramer MS (2007) The use of customised versus population-based birthweight standards in predicting perinatal mortality. BJOG 114:474–477

    Article  CAS  PubMed  Google Scholar 

  73. Engineer N, Kumar S (2010) Perinatal variables and neonatal outcomes in severely growth restricted preterm fetuses. Acta Obstet Gynecol Scand 89:1174–1181

    Article  PubMed  Google Scholar 

  74. Beck P, Daughaday WH (1967) Human placental lactogen: Studies of its acute metabolic effects and disposition in normal man. J Clin Invest 46:103

    Google Scholar 

  75. Samaan N, Yen SC, Gonzalez D, Pearson OH (1968) Metabolic effects of placental lactogen (HPL) in man. J Clin Endocrinol Metab 28:485–491

    Article  CAS  PubMed  Google Scholar 

  76. Ostlund I, Haglund B, Hanson U (2004) Gestational diabetes and preeclampsia. Eur J Obstet Gynecol Reprod Biol 113:12–16

    Article  PubMed  Google Scholar 

  77. Yogev Y, Xenakis EM, Langer O (2004) The association between preeclampsia and the severity of gestational diabetes: The impact of glycemic control. Am J Obstet Gynecol 191:1655–1660

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Espinoza M.D., M.Sc., FACOG .

Editor information

Editors and Affiliations

Glossary

Pre-eclampsia

Hypertensive disorder of pregnancy that typically starts after the 20th week of pregnancy.

Genomic imprinting

The process by which one copy of a gene is silenced due to its parental origin.

Mole pregnancy

Results from a genetic error during the fertilization process that leads to growth of abnormal placenta within the uterus.

Grb10

Growth factor receptor-bound protein 10 also known as insulin receptor-binding protein.

Spiral arteries

Small arteries that are remodelled into highly dilated vessels during pregnancy to increase the blood supply to foetal and placental tissues.

Placental bed disorders

Refers to defective placentation in the human which is associated with pregnancy complications such pre-eclampsia, foetal growth restriction, and foetal death.

Uteroplacental ischaemia

During pregnancy, the uterus and placenta form a functional unit. This term refers to reduced blood flow to this unit.

Angiogenic factors

Promote the viability and growth of endothelial cells. Foetal signalling: proposed pathways used by the foetus to alter the maternal of placental physiology.

HELLP syndrome

A severe form of pre-eclampsia characterized by abnormal liver enzymes, low platelets and destruction of red blood cells.

Adenosine

Compound that plays an important role in energy transfer signal transduction and regulation of blood flow to various organs.

Uterine artery Doppler velocimetry

Ultrasonographic technique to evaluate the characteristics of blood flow in vessels.

VEGF

Vascular endothelial growth factor is a signalling protein involved in the formation and growth of blood vessels.

sFlt-1

Splice variant of VEGF receptor 1an excess of this soluble form in the circulation can reduce the bioavailability of VEGF (anti-angiogenic).

Thrombophilia

Abnormality of blood coagulation that increases the risk of thrombosis.

Tocolysis

Medical interventions to reduce or stop uterine contractions.

Allocrine hormones

Foreign hormones being taken up and eliciting a response in an organism.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Espinoza, J. (2016). “Foetal–Maternal Conflicts” and Adverse Outcomes in Human Pregnancies. In: Alvergne, A., Jenkinson, C., Faurie, C. (eds) Evolutionary Thinking in Medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer, Cham. https://doi.org/10.1007/978-3-319-29716-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29716-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29714-9

  • Online ISBN: 978-3-319-29716-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics