Skip to main content

Evolutionary Imprints on Cardiovascular Physiology and Pathophysiology

  • Chapter
  • First Online:
Evolutionary Thinking in Medicine

Abstract

Today, cardiovascular diseases (CD) are the overall leading cause of mortality worldwide. The most prevalent cardiovascular forms of diseases can be linked to adaptive selective forces acting during the evolution of cardiovascular systems from invertebrate animals to mammals, i.e., for 4 billion years, that have become maladaptive during the post-agricultural period, in humans following the changes in civilization, environment, and habits. Key among these is the association of arterial hypertension with increased dietary salt intake. Atherosclerotic disease has also been linked to meat and fat consumption. Policies to treat CD must be twofold: (1) to remove the maladaptive changes, e.g., high dietary salt, obesity, and high cholesterol and (2) to use our understanding of the molecular aspects of CD to develop targeted therapeutics, e.g., diuretics to increase salt excretion and to reduce lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bishopric NH (2005) Evolution of the heart from bacteria to man. Ann N Y Acad Sci 1047:13–29

    Article  CAS  PubMed  Google Scholar 

  2. www.who.int/mediacentre/factsheets/fs317/en/

  3. Archer E, Blair SN (2011) Physical activity and the prevention of cardiovascular disease: from evolution to epidemiology. Prog Cardiovasc Dis 53:387–396

    Article  PubMed  Google Scholar 

  4. deGoma EM, Knowles JW, Angeli F, Budoff MJ, Rader DJ (2012) The evolution and refinement of traditional risk factors for cardiovascular disease. Cardiol Rev 20:118–129

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang D, Liu Z (2013) An evolutionary perspective on cardiovascular disease. Phylogenet Evol Biol 1:1–2

    Google Scholar 

  6. Ai X, Jiang A, Ke Y, Solaro RJ, Pogwizd SM (2011) Enhanced activation of p21-activated kinase 1 in heart failure contributes to dephosphorylation of connexin 43. Cardiovasc Res 92:106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sing CF, Boerwinkle E, Turner ST (1986) Genetics of primary hypertension. Clin Exp Hypertens A 8:623–651

    CAS  PubMed  Google Scholar 

  8. Bochud M, Bovet P, Elston RC, Paccaud F, Falconnet C, Maillard M, Shamlaye C, Burnier M (2005) High heritability of ambulatory blood pressure in families of East African descent. Hypertension 45:445–450

    Article  CAS  PubMed  Google Scholar 

  9. Hottenga JJ, Boomsma DI, Kupper N, Posthuma D, Snieder H, Willemsen G, de Geus EJ (2005) Heritability and stability of resting blood pressure. Twin Res Hum Genet 8:499–508

    Article  PubMed  Google Scholar 

  10. Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ (2005) Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension 45:80–85

    Article  CAS  PubMed  Google Scholar 

  11. Elliott P, Marmot M, Dyer A, Joossens J, Kesteloot H, Stamler R, Stamler J, Rose G (1989) The INTERSALT study: main results, conclusions and some implications. Clin Exp Hypertens A 11:1025–1034

    CAS  PubMed  Google Scholar 

  12. Stamler J (1997) The INTERSALT study: background, methods, findings, and implications. Am J Clin Nutr 65:626S–642S

    CAS  PubMed  Google Scholar 

  13. Lev-Ran A, Porta M (2005) Salt and hypertension: a phylogenetic perspective. Diabetes Metab Res Rev 21:118–131

    Article  PubMed  Google Scholar 

  14. Kusche-Vihrog K, Schmitz B, Brand E (2015) Salt controls endothelial and vascular phenotype. Pflugers Arch 467:499–512

    Article  CAS  PubMed  Google Scholar 

  15. Edwards DG, Farquhar WB (2015) Vascular effects of dietary salt. Curr Opin Nephrol Hypertens 24:8–13

    Article  CAS  PubMed  Google Scholar 

  16. Kullo IJ, Leeper NJ (2015) The genetic basis of peripheral arterial disease: current knowledge, challenges, and future directions. Circ Res 116:1551–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eaton SB, Konner M (1985) Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 312:283–289

    Article  CAS  PubMed  Google Scholar 

  18. Kullo IJ, Trejo-Gutierrez JF, Lopez-Jimenez F, Thomas RJ, Allison TG, Mulvagh SL, Arruda-Olson AM, Hayes SN, Pollak AW, Kopecky SL, Hurst RT (2014) A perspective on the New American College of Cardiology/American Heart Association guidelines for cardiovascular risk assessment. Mayo Clin Proc 89:1244–1256

    Article  PubMed  Google Scholar 

  19. Nasir K, Budoff MJ, Wong ND, Scheuner M, Herrington D, Arnett DK, Szklo M, Greenland P, Blumenthal RS (2007) Family history of premature coronary heart disease and coronary artery calcification: Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 116:619–626

    Article  PubMed  Google Scholar 

  20. Marenberg ME, Risch N, Berkman LF, Floderus B (1994) de FU: Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330:1041–1046

    Article  CAS  PubMed  Google Scholar 

  21. Marenberg ME, Risch N, Berkman LF, Floderus B (1994) de FU: Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330:1041–1046

    Article  CAS  PubMed  Google Scholar 

  22. Bjorkegren JL, Kovacic JC, Dudley JT, Schadt EE (2015) Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol 65:830–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jawien J (2012) The role of an experimental model of atherosclerosis: apoE-knockout mice in developing new drugs against atherogenesis. Curr Pharm Biotechnol 13:2435–2439

    Article  CAS  PubMed  Google Scholar 

  24. Imaizumi K (2011) Diet and atherosclerosis in apolipoprotein E-deficient mice. Biosci Biotechnol Biochem 75:1023–1035

    Article  CAS  PubMed  Google Scholar 

  25. Nishina PM, Verstuyft J, Paigen B (1990) Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res 31:859–869

    CAS  PubMed  Google Scholar 

  26. Fernandez ML, Volek JS (2006) Guinea pigs: a suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation. Nutr Metab (Lond) 3:17

    Article  Google Scholar 

  27. Schadt EE, Bjorkegren JL: NEW: network-enabled wisdom in biology, medicine, and health care. Sci Transl Med 2012;4:115rv1

    Google Scholar 

  28. Bjorkegren JL, Kovacic JC, Dudley JT, Schadt EE (2015) Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol 65:830–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roberts R (2015) A genetic basis for coronary artery disease. Trends Cardiovasc Med 25:171–178

    Article  CAS  PubMed  Google Scholar 

  30. Goldschmidt-Clermont PJ, Dong C, Seo DM, Velazquez OC (2012) Atherosclerosis, inflammation, genetics, and stem cells: 2012 update. Curr Atheroscler Rep 14:201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGill HC Jr (1978) Risk factors for atherosclerosis. Adv Exp Med Biol 104:273–280

    Article  PubMed  Google Scholar 

  32. Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8:1–21

    Article  CAS  PubMed  Google Scholar 

  33. Phillips MC (2014) Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 66:616–623

    Article  CAS  PubMed  Google Scholar 

  34. Davignon J, Cohn JS, Mabile L, Bernier L (1999) Apolipoprotein E and atherosclerosis: insight from animal and human studies. Clin Chim Acta 286:115–143

    Article  CAS  PubMed  Google Scholar 

  35. Mertens G (2010) Gene/environment interaction in atherosclerosis: an example of clinical medicine as seen from the evolutionary perspective. Int J Hypertens 2010:654078

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC (2002) Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 155:487–495

    Article  PubMed  Google Scholar 

  37. Mahley RW, Rall SC Jr (1999) Is epsilon4 the ancestral human apoE allele? Neurobiol Aging 20:429–430

    Article  CAS  PubMed  Google Scholar 

  38. Corbo RM, Scacchi R (1999) Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ‘thrifty’ allele? Ann Hum Genet 63:301–310

    Article  CAS  PubMed  Google Scholar 

  39. Kuipers RS, Luxwolda MF, Dijck-Brouwer DA, Eaton SB, Crawford MA, Cordain L, Muskiet FA (2010) Estimated macronutrient and fatty acid intakes from an East African Paleolithic diet. Br J Nutr 104:1666–1687

    Article  CAS  PubMed  Google Scholar 

  40. De MC, Rudemiller NP, Abais JM, Mattson DL (2015) Inflammation and hypertension: new understandings and potential therapeutic targets. Curr Hypertens Rep 17:507

    Article  Google Scholar 

  41. Okin D, Medzhitov R (2012) Evolution of inflammatory diseases. Curr Biol 22:R733–R740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang WH, Hazen SL (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 124:4204–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ehrlich P (2001) The human natures: genes, cultures, and the human prospect. Penguin Books, New York, p 36

    Google Scholar 

  44. Kotchen TA, Cowley AW Jr, Frohlich ED (2013) Salt in health and disease–a delicate balance. N Engl J Med 368:1229–1237

    Article  CAS  PubMed  Google Scholar 

  45. Whelton PK, Appel LJ, Sacco RL, Anderson CA, Antman EM, Campbell N, Dunbar SB, Frohlich ED, Hall JE, Jessup M, Labarthe DR, MacGregor GA, Sacks FM, Stamler J, Vafiadis DK, Van Horn LV (2012) Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 126:2880–2889

    Article  CAS  PubMed  Google Scholar 

  46. Stolarz-Skrzypek K, Staessen JA (2015) Reducing salt intake for prevention of cardiovascular disease–times are changing. Adv Chronic Kidney Dis 22:108–115

    Article  PubMed  Google Scholar 

  47. Darioli R (2011) Dietary proteins and atherosclerosis. Int J Vitam Nutr Res 81:153–161

    Article  CAS  PubMed  Google Scholar 

  48. Liao F, Hori Y, Hudry E, Bauer AQ, Jiang H, Mahan TE, Lefton KB, Zhang TJ, Dearborn JT, Kim J, Culver JP, Betensky R, Wozniak DF, Hyman BT, Holtzman DM (2014) Anti-ApoE antibody given after plaque onset decreases Abeta accumulation and improves brain function in a mouse model of Abeta amyloidosis. J Neurosci 34:7281–7292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Michas G, Micha R, Zampelas A (2014) Dietary fats and cardiovascular disease: putting together the pieces of a complicated puzzle. Atherosclerosis 234:320–328

    Article  CAS  PubMed  Google Scholar 

  50. Haring B, Gronroos N, Nettleton JA, von Ballmoos MC, Selvin E, Alonso A (2014) Dietary protein intake and coronary heart disease in a large community based cohort: results from the Atherosclerosis Risk in Communities (ARIC) Study. PLoS ONE 9:e109552

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ (2003) The Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289:2560–2572

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Danziger M.D. .

Editor information

Editors and Affiliations

Glossary

Atherosclerosis

Atherosclerotic plaques are aggregates of plasma lipids (especially cholesterol) cells (smooth muscle cells and monocytes/macrophages), and connective tissue matrix (collagen fibers and proteoglycans). Inflammation is the “dominant process” with atherosclerotic plaques characterized by increased cellular proliferation, lipids accumulation, calcification, ulceration, hemorrhage, and thrombosis. Typically, a major acute coronary syndrome occurs when an atherosclerotic plaque in a coronary artery ruptures with subsequent thrombosis. Chronic ischemia caused by reduced blood flow in the coronary artery due to narrowing of the vessels by atherosclerosis triggers chronic stable angina and may cause heart failure. The most common form of stroke arises when blood clots form on atherosclerotic plaques in carotid and cerebral arteries and blocks flow (reviewed in [30]).

Hypertension

Over 500 million people experience hypertension worldwide and its prevalence increases with age especially in Western civilization. There is overwhelming evidence that reducing hypertension reduces cardiovascular morbidity and mortality. Antihypertensive therapy has been associated with reductions in stroke incidence averaging 35–40 %, myocardial infarction 20–25 %, and heart failure >50 %. It is estimated that in patients with stage 1 hypertension and additional cardiovascular risk factors, achieving a sustained 12 mmHg reduction in systolic blood pressure over 10 years will prevent 1 death for every 11 patients treated [51]. The origins of current standard and effective treatment of hypertension can be derived from evolutionary insights.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Danziger, R.S. (2016). Evolutionary Imprints on Cardiovascular Physiology and Pathophysiology. In: Alvergne, A., Jenkinson, C., Faurie, C. (eds) Evolutionary Thinking in Medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer, Cham. https://doi.org/10.1007/978-3-319-29716-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29716-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29714-9

  • Online ISBN: 978-3-319-29716-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics