Skip to main content

Rock Moisture Dynamics, Preferential Flow, and the Stability of Hillside Slopes

  • Chapter
  • First Online:
Multi-hazard Approaches to Civil Infrastructure Engineering

Abstract

This chapter investigates the relevant hydrologic and geotechnical processes triggering failure of steep hillside slopes under rainfall infiltration. Despite decades of extensive study, the fundamental controls responsible for this commonly observed slope failure mechanism are yet to be quantified. The work focuses on the triggering mechanisms of slope failure induced by rainfall events and highlights the multiphysical nature of the problem. In hillside slopes, fluid supply from the rain and fluid input from the fractures of an underlying bedrock create moisture dynamics that could undermine the stability of slopes. The impact of such dynamics is difficult to predict, let alone quantify. In this chapter, the influence of rainfall input into the slope surface and the accompanying rock moisture dynamics are investigated using a hydromechanical model that couples the interaction between fluid flow and solid deformation. Both single-porosity and double-porosity formulations are employed, the latter formulation pertaining to the case where the solid matrix exhibits two dominant porosity scales. Nonlinear finite element simulations of the failure of hypothetical hillside slopes similar in configuration to the two well-documented test slopes, the CB1 and Ruedlingen test slopes, reveal the impacts of slope/bedrock topography, rainfall history, rock moisture dynamics, and preferential flow pattern on the failure of hillside slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, S. P., Dietrich, W. E., Montgomery, D. R., Torres, R., Conrad, M. E., & Loague, K. (1997). Subsurface flow paths in a steep, unchanneled catchment. Water Resources Research, 33, 2637–2653.

    Article  Google Scholar 

  • Askarinejad, A., Casini, F., Bischof, P., Beck, A., & Springman, S. M. (2012). Rainfall induced instabilities: A field experiment on a silty slope in northern Switzerland. Italian Geotechnical Journal, 46, 50–71.

    Google Scholar 

  • Barenblatt, G. I., Zheltov, I. u. P., & Kochina, I. N. (1960). Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematics and Mechanics, 24(5), 1286–1303.

    Google Scholar 

  • Bochev, P. B., & Dohrmann, C. R. (2006). A computational study of stabilized, low-order C0 finite element approximations of Darcy equations. Computational Mechanics, 38(4–5), 323–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Bochev, P. B., Dohrmann, C. R., & Gunzburger, M. D. (2006). Stabilization of low-order mixed finite elements for the Stokes equations. SIAM Journal on Numerical Analysis, 44(1), 82–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Borja, R. I. (2004). Cam-Clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Computer Methods in Applied Mechanics and Engineering, 193, 5301–5338.

    Article  MATH  Google Scholar 

  • Borja, R. I. (2006). On the mechanical energy and effective stress in saturated and unsaturated porous continua. International Journal of Solids and Structures, 43, 1764–1786.

    Article  MATH  Google Scholar 

  • Borja, R. I., & Andrade, J. E. (2006). Critical state plasticity. Part VI: Meso-scale finite element simulation of strain localization in discrete granular materials. Computer Methods in Applied Mechanics and Engineering, 195, 5115–5140.

    Article  MATH  Google Scholar 

  • Borja, R. I., & Koliji, A. (2009). On the effective stress in unsaturated porous continua with double porosity. Journal of the Mechanics and Physics of Solids, 57(8), 1182–1193.

    Article  MATH  Google Scholar 

  • Borja, R. I., & White, J. A. (2010). Conservation laws for coupled hydromechanical processes in unsaturated porous media: Theory and implementation. In L. Laloui (Ed.), Mechanics of Unsaturated Geomaterials (pp. 185–208). Wiley-ISTE

    Google Scholar 

  • Borja, R. I., & White, J. A. (2010). Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotechnica, 5(1), 1–14.

    Article  Google Scholar 

  • Borja, R. I., Liu, X., & White, J. A. (2012). Multiphysics hillslope processes triggering landslides. Acta Geotechnica, 7(4), 261–269.

    Article  Google Scholar 

  • Borja, R. I., White, J. A., Liu, X., & Wu, W. (2012). Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 36(2), 236–248.

    Article  Google Scholar 

  • Borja, R. I., Song, X., & Wu, W. (2013). Critical state plasticity. Part VII: Triggering a shear band in variably saturated porous media. Computer Methods in Applied Mechanics and Engineering, 261–262, 66–82.

    Article  MATH  Google Scholar 

  • Brezzi, F., & Bathe, K. J. (1990). A discourse on the stability conditions for mixed finite element formulations. Computer Methods in Applied Mechanics and Engineering, 82, 27–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Brown III, W. M., Sitar, N., Saarinen, T. F., & Blair, M. L. (1984). Debris flows, landslides, and floods in the San Francisco Bay region, January 1982: Overview of summary of a conference held at Stanford University, August 23–26, 1982. National Research Council and USGS.

    Google Scholar 

  • Carminati, A., Kaestner, A., Ippisch, O., Koliji, A., Lehmann, O., Hassanein, R., et al. (2007). Water flow between soil aggregates. Transport in Porous Media, 68, 219–236.

    Article  Google Scholar 

  • Choo, J., White, J., & Borja, R. (2016). Hydromechanical Modeling of Unsaturated Flow in Double Porosity Media. International Journal of Geomechanics. doi: 10.1061/(ASCE)GM.1943-5622.0000558, D4016002.

    Google Scholar 

  • Choo, J., & Borja, R. I. (2015). Stabilized mixed finite elements for deformable porous media with double porosity. Computer Methods in Applied Mechanics and Engineering, 293, 131–154.

    Article  MathSciNet  Google Scholar 

  • Coe, J. A., Kean, J. W., Godt, J. W., Baum, R. L., & Jones, E. S. (2014). New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range. GSA Today, 24(10). doi: 10.1130/GSATG214A.1.

    Google Scholar 

  • Dykhuizen, R. C. (1990). A new coupling term for dual-porosity models. Water Resources Research, 26(2), 351–356.

    Google Scholar 

  • Ebel, B. A., Loague, K., Dietrich, W. E., Montgomery, D. R., Torres, R., Anderson, S. P., & Giambelluca, T. W. (2007). Near-surface hydrologic response for a steep, unchanneled catchment near Coos Bay, Oregon: 1. Sprinkling experiments. American Journal of Science, 307, 678–708.

    Article  Google Scholar 

  • Ebel, B. A., Loague, K., & Borja, R. I. (2010). The impacts of hysteresis on variably saturated hydrologic response and slope failure. Environmental Earth Sciences, 61, 1215–1225.

    Article  Google Scholar 

  • Gerke, H. H., & van Genuchten, M. T. (1993). A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research, 29(2), 305–319

    Article  Google Scholar 

  • Gerke, H. H., & van Genuchten, M. T. (1993). Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models. Water Resources Research, 29(4), 1225–1238

    Article  Google Scholar 

  • Jibson, R. W. (1992). The Mameyes, Puerto Rico, landslide disaster of October, 7, 1985. In J. E. Slosson, A. G. Keene, & J. A. Johnson (Eds.), Landslides/Landslide Mitigation (pp. 37–54). Reviews in Engineering Geology, Boulder. Colorado: Geological Society of America.

    Google Scholar 

  • Klaus, J., Zehe, E., Elsner, M., Külls, C., & McDonnell, J. J. (2013). Macropore flow of old water revisited: experimental insights from a tile-drained hillslope. Hydrology and Earth System Sciences, 17, 103–118.

    Article  Google Scholar 

  • Laine-Kaulio, H., Backnäs, S., Karvonen, T., Koivusalo, H., & McDonnell, J. J. (2014). Lateral subsurface stormflow and solute transport in a forested hillslope: A combined measurement and modeling approach. Water Resources Research, 50, 8159–8178.

    Article  Google Scholar 

  • Lagmay, A. M. A., Ong, J. B. T., Fernandez, D. F. D., Lapus, M. R., Rodolfo, R. S., Tengonciang, A. M. P., et al. (2006). Scientists investigate recent Philippine landslide. Eos Transactions, AGU 87(12), 121–128.

    Google Scholar 

  • Loague, K., & VanderKwaak, J. E. (2001). Simulating hydrologic-response for the R-5 catchment: comparison of two models and the impact of the roads. Hydrological Processes, 16, 1015–1032.

    Article  Google Scholar 

  • Martinez, E. (2000). Evento Meteorologico sobre el Litoral Central en Diciembre 1999. Informe inedito

    Google Scholar 

  • Mehrabian, A., & Abousleiman, Y. N. (2015). Gassmann equations and the constitutive relations for multiple-porosity and multiple-permeability poroelasticity with applications to oil and gas shale. International Journal for Numerical Analytical Methods in Geomechanics. doi: 10.1002/nag.2399.

    Google Scholar 

  • Montgomery, D. R., Dietrich, W. E., Torres, R., Anderson, S. P., Heffner, J. T., & Loague, K. (1997). Hydrologic response of a steep, unchanneled valley to natural applied rainfall. Water Resources Research, 33, 91–109.

    Article  Google Scholar 

  • Nieto, A. S., & Barany, I. (1988). Interim report on catastrophic rain-induced landslides in Rio de Janeiro and Petropolis, Brazil. In Report to Committee on Natural Disasters, National Resource Council, Urbana, University of Illinois, Department of Geology

    Google Scholar 

  • Ogura, A. T., & Filho, O. A. (1991). The Morin debris-flow at Petropolis City, Rio de Janeiro State, Brazil. Landslide News, 5, 22–24.

    Google Scholar 

  • Passman, S. L., Nunziato, J. W., & Walsh, E. K. (1984). A theory of multiphase mixtures. In C. Truesdell (Ed.), Rational Thermodynamics (pp. 286–325). Springer, New York.

    Chapter  Google Scholar 

  • Schuster, R. L., Salcedo, D. A., & Valenzuela, L. (2002). Overview of catastrophic landslides of South America in the twentieth century. In S. G. Evans, & J. V. DeGraff (Eds.), Catastrophic Landslides: Effects, Occurrence, and Mechanisms (pp. 1–33). Reviews in Engineering Geology, Boulder. Colorado: Geological Society of America.

    Google Scholar 

  • Shlemon, R. J., Wright, R. H., & Montgomery, D. R. (1987). Anatomy of a debris flow, Pacifica, California. In Debris Flows/Avalanches: Process, Recognition, and Mitigation (pp. 181–199). Reviews in Engineering Geology, Vol 7. Colorado: Geological Society of America.

    Google Scholar 

  • Smith, T. C., & Hart, E. W. (1982). Landslides and related storm damage, January 1982, San Francisco Bay region. California Geology, 35(7), 139–152.

    Google Scholar 

  • Song, X., & Borja, R. I. (2014). Mathematical framework for unsaturated flow in the finite deformation range. International Journal for Numerical Methods in Engineering, 97, 658–792.

    Article  MathSciNet  Google Scholar 

  • Song, X., & Borja, R. I. (2014). Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone Journal, 13(5). doi:10.2136/vzj2013.07.0131.

  • Stadler, L., Hinkelmann, R., & Helmig, R. (2012). Modeling macroporous soils with a two-phase dual-permeability model. Transport in Porous Media, 95, 585–601.

    Google Scholar 

  • Torres, R., Dietrich, W. E., Montgomery, D. R., Anderson, S. P., & Loague, K. (1998). Unsaturated zone processes and the hydrologic response of a steep, unchanneled catchment. Water Resources Research, 34, 1865–1879.

    Article  Google Scholar 

  • USAID. (2000). Venezuela factsheet, February, 2000. USAID-Office of Foreign Disaster Assistance.

    Google Scholar 

  • Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

    Article  Google Scholar 

  • Van Sint Jan, M., & Talloni, P. (1993). Flujo de sedimentos del 18 de junio de 1991 en Antofagosta: La Serena, Chile. Tercer Congreso Chileno de Ingenieria Geotécnica, 1, 247–265.

    Google Scholar 

  • Warren, J., & Root, P. (1963). The behavior of naturally fractured reservoirs. SPE Journal, 3(3), 245–255.

    Article  Google Scholar 

  • White, J. A., & Borja, R. I. (2008). Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Computer Methods in Applied Mechanics and Engineering, 197(49–50), 4353–4366.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon the work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program, under Award Number DE-FG02-03ER15454, by the US National Science Foundation, under Award Number CMS-1462231. The second author acknowledges financial supports provided by the Fulbright Program and the John A. Blume Earthquake Engineering Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo I. Borja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borja, R.I., Choo, J., White, J.A. (2016). Rock Moisture Dynamics, Preferential Flow, and the Stability of Hillside Slopes. In: Gardoni, P., LaFave, J. (eds) Multi-hazard Approaches to Civil Infrastructure Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-29713-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29713-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29711-8

  • Online ISBN: 978-3-319-29713-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics