Skip to main content

Plasma Hysteresis and Instability: A Memory Perspective

  • Chapter
  • First Online:
  • 1411 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This paper presents a historical review of the significance of Duddell ‘Singing-arc’ in the context of its application of deleterious effects in the control of both hysteresis and spatial-temporal stability as the two-electrode valve evolved into the three-electrode triode vacuum tube. The use of oscillograph Lissajous figure in I-V plane, Q-V plane and harmonic plane in investigating of these deleterious effects within modern low-pressure parallel-plate systems and atmospheric pressure plasma system are illustrated and compared the hysteresis and stability within the ‘Singing arc’. The development from the original oscillograph measurement today’s analog, digital, and software methods of measurement is considered. The question, whether the ‘Signing-arc’ and other plasma systems fall in the category of a memory element is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Patterns produced by intersection of two sinusoidal curves the axes of which are at right angles to each other were first studied by Nathaniel Bowditch in 1815, and later by Jules-Antoine Lissajous in 1857–1858.

    Google Scholar 

  2. T. Prodromakis, C. Toumazou, L.O. Chua, Two centuries of memristor. Nat. Mater. 11, 478–481 (2012)

    Article  ADS  Google Scholar 

  3. N. Hawkins, Wave form measurement, in Hawkins Electrical Guide, vol. 6, 2nd edn. (Theo. Audel and Co., New York, 1917), p. 1866, Figs. 2621–2623

    Google Scholar 

  4. W. Duddell, On rapid variations in the current through the direct current arc. J. Instit. Electr. Eng. 30(148), 232–267 (1900)

    Google Scholar 

  5. A.P. Trottor, in The Rotation of the Electric Arc. Proceedings of the Royal Society of London (Philosophical Transactions of the Royal Society, London, 1st January 1894), pp. 262–261

    Google Scholar 

  6. H.T. Simon, Über die Dynamik der LichtbogenVorgänge und über Lichtbogenhysteresis. Phys. Z. 6, 297–319 (1905)

    Google Scholar 

  7. L. Michael, 1900: nature reports on William Duddell ‘musical arcs’. APS News 19(11), 2 (2010)

    Google Scholar 

  8. P. Janet, Quelques remarques sur la théorie de l'arc chantant de Duddell. C. R. 134, 821–823 (1902)

    Google Scholar 

  9. A. Blondel, Sur les phénomenes de l’arc chantant. Éclairage Électrique 44(28), 41–58, 81–104 (1905)

    Google Scholar 

  10. L.W. Austin, The production of high frequency from the electric arc. Bull. Bur. Stand. 3(2), 325–340 (1907)

    Article  MathSciNet  Google Scholar 

  11. J.E. Hoyt, Oscillographic study of the singing arc. Phys. Rev. (Series I) 35, 387–399 (1912)

    Article  ADS  Google Scholar 

  12. J.-M. Ginoux, B. Rossetto, The singing arc: the oldest memristor?, in Chaos CNN Memristors and Beyond: A Festschrift for Leon Chua, chap. 40, ed. by A. Adamatzky, G. Chen (World Scientific Publishing, Singapore, 2013), pp. 495–505. ISBN 978-981-4434-79-9. arXiv:1408.5103 [physics.hist-ph]

    Google Scholar 

  13. T.C. Manley, The electric characteristics of the ozonator discharge. Trans. Electrochem. Soc. 84(1), 83–96 (1943)

    Article  Google Scholar 

  14. G. Nersisyan, W.G. Graham, Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium. Plasma Sources Sci. Technol. 13, 582–587 (2004)

    Article  ADS  Google Scholar 

  15. M.M. Turner, M.A. Lieberman, Hysteresis and the E-to-H transition in radio frequency inductive discharges. Plasma Sources Sci. Technol. 8, 313–324 (1999)

    Article  ADS  Google Scholar 

  16. V.J. Law, N. O'Connor, B. Twomey, D.P. Dowling, S. Daniels, in Visualization of Atmospheric Pressure Plasma Plectrical Parameters, ed. by C.H. Skiadas, I. Dimotikalis, C. Skiadas. Topics of Chaotic Systems: Selected Papers of Chaos 2008 International Conference (World Scientific Publishing, Singapore, 2009), pp. 204–213. ISBN: 978-981-4271-33-2

    Google Scholar 

  17. C.E. Nwankire, V.J. Law, A. Nindrayog, B. Twomey, K. Niemi, V. Milosavljević, W.G. Graham, D.P. Dowling, Electrical, thermal and optical diagnostics of an atmospheric plasma jet system. Plasma Chem. Plasma Process. 30(5), 537–552 (2010)

    Article  Google Scholar 

  18. V. Poulsen, in System for Producing Continuous Electric Oscillations. Transactions of the International Electrical Congress (J. R. Lyon Co., St. Louis, 1904), pp. 963–971

    Google Scholar 

  19. I. Langmuir, The effect of space charge and residual gases on thermionic currents in high vacuum. Phys. Rev. 2(6), 450–486 (1913)

    Article  ADS  Google Scholar 

  20. G.F.J. Tyne, in Saga of the Vacuum Tube (Howard W Sams & Co., Indianapolis, 1977), pp. 192–198

    Google Scholar 

  21. B. Van de Pol, A theory of amplitude of free and forced triode vibrations. Radio Rev. (Lond.) 1 (1920). 710–710 and 754–762

    Google Scholar 

  22. B. Van de Pol, J. Van de Mark, Frequency demultiplication. Nature 120, 164–164 (1927)

    Google Scholar 

  23. V.E. Appleton, B. Van de Pol, On a type of oscillation-hysteresis in a simple triode generator. Philos. Mag. 43, 177–193 (1922)

    Article  Google Scholar 

  24. J.-M. Ginoux, C. Letellier, Van der Pol and the history of relaxation oscillations: toward the emergence of a concept. Chaos 22, 023120 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J.-M. Ginoux, L. Petitgirard, Poincar´e’s forgotten conferences on wireless telegraphy. Int. J. Bifurcat. Chaos 20(11), 3617 (2010)

    Google Scholar 

  26. A. Andronov, Poincare’s limit cycles and the theory of self-oscillations. C. R. Acad. Sci. 189, 559–561 (1929)

    Google Scholar 

  27. Z. Szymański, J. Hoffman, J. Kurzyna, Plasma plume oscillations during welding of thin metal sheets with a CW CO2 laser. J. Phys. D Appl. Phys. 34, 189–199 (2001)

    Google Scholar 

  28. D.P. Dowling, F.T. O’Neill, S.J. Langlais, V.J. Law, Influence of dc pulsed atmospheric pressure plasma jet processing conditions on polymer activation. Plasma Process. Polym. 8(8), 718–727 (2011)

    Article  Google Scholar 

  29. D.P. Dowling, F.T. O’Neill, V. Milosavljević, V.J. Law, DC pulsed atmospheric pressure plasma jet image information. IEEE Trans. Plasma Sci. 39(11), 2326–2327 (2011)

    Google Scholar 

  30. V.J. Law, V. Milosavljevic, N. O’Connor, J.F. Lalor, S. Daniels, Handheld flyback driven coaxial dielectric barrier discharge: development and characterization. Rev. Sci. Instrum. 79(9), 094707 (2008)

    Google Scholar 

  31. V.J. Law, S.D. Anghel, Compact atmospheric pressure plasma self-resonant drive circuits. J. Phys. D Appl. Phys. 45(7), 075202, 14 (2012)

    Google Scholar 

  32. F.T. O’Neill, B. Twomey, V.J. Law, V. Milosavljević, M.G. Kong, S.D. Anghel, D.P. Dowling, Generation of active species in a large atmospheric pressure plasma jet. IEEE Plasma Sci. 40(11), 2994–3004 (2012)

    Google Scholar 

  33. J.L. Walsh, F. Iza, N.B. Janson, V.J. Law, M.G. Kong, Three distinct modes in a cold atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 43(7), 075201, 14 (2010)

    Google Scholar 

  34. J.L. Walsh, F. Iza, N.B. Janson, M.G. Kong, Chaos in atmospheric-pressure plasma jets. Plasma Sources Sci. Technol. 21(3), 034008 (2012)

    Google Scholar 

  35. S. Okazaki, M. Kogoma, M. Uehara, Y. Kimura, Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. J. Phys. D Appl. Phys. 26(5), 889–892 (1993)

    Article  ADS  Google Scholar 

  36. Z. Falkenstein, J.J. Coogan, Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. J. Phys. D Appl. Phys. 30(19), 817–825 (1997)

    Article  ADS  Google Scholar 

  37. F. Massine, A. Rabehi, P. Decomps, R. Gadri, P. Sègur, C. Mayoux, Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J. Appl. Phys. 83, 2950–2957 (1998)

    Article  ADS  Google Scholar 

  38. F. Tochikubo, T. Chiba, T. Watanabe, Structure of low-frequency helium glow discharge at atmospheric pressure between parallel plate dielectric electrodes. Jpn. J. Appl. Phys. 38, 5244–5250 (1999)

    Article  ADS  Google Scholar 

  39. V.J. Law, A. Kenyon, N.F. Thornhill, A. Seeds, I. Batty, Rf probe technology for the next generation of technological plasmas. J. Phys. D Appl. Phys. 34(18), 2726–2733 (2001)

    Google Scholar 

  40. A.R. Ellingboe, V.J. Law, F. Soberón, F. Garcia, W.G. Graham, External circuit system effects on Cl2 plasma instabilities. Electr. Lett. 41(9), 525–526 (2005)

    Article  Google Scholar 

  41. F. Soberón, F.G. Marro, W.G. Graham, A.R. Ellingboe, V.J. Law, Chlorine plasma system instabilities within an ICP driven at a frequency of 13.56 MHz. Plasma Source Sci. Technol. 15(2), 193–203 (2006)

    Google Scholar 

  42. D. Lin, S.Y.R. Hui, L.O. Chua, Gas discharge lamps are volatile memristor. IEEE Trans. Circuits Syst. 61(7), 2066–2073 (2014)

    Article  Google Scholar 

  43. L.O. Chua, If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29, 104001, 42 (2014)

    Google Scholar 

  44. J.J. Shi, D.W. Liu, M.G. Kong, Plasma stability control using dielectric barriers in radio-frequency atmospheric pressure glow discharges. Appl. Phys. Lett. 89, 081502 (2004)

    Article  ADS  Google Scholar 

  45. V.J. Law, A. Ramamoorthy, D.P. Dowling, Real-time process monitoring during the plasma treatment of carbon weave composite materials. JMSE 1(2B), 164–169 (2011)

    Google Scholar 

  46. V.J. Law, D.P. Dowling, in Embedded Delay Time-Series Analysis of Atmospheric Pressure Plasma Jet Treatment of Composite Surfaces. Chaos 2015, Paris, 27th May 2015

    Google Scholar 

  47. V.J. Law, Plasma Harmonic and Overtone Coupling, in Handbook of Applications of Chaos Theory, ed. by C.H. Skiadas, C. Skiadas (Chapman and Hall/CRC Press, Taylor & Francis, 2016), chap. 20, pp. 405–422. ISBN: 9781466590434

    Google Scholar 

  48. J.W. Gibbs, Fourier’s Series. Nature 59, 200, 606 (1899)

    Google Scholar 

Download references

Acknowledgement

This research is partially support by the Irish Centre for Composites Research (IComp).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. J. Law .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Law, V.J., Graham, W.G., Dowling, D.P. (2016). Plasma Hysteresis and Instability: A Memory Perspective. In: Skiadas, C. (eds) The Foundations of Chaos Revisited: From Poincaré to Recent Advancements. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-29701-9_9

Download citation

Publish with us

Policies and ethics