Skip to main content

Hydrodynamic Turbulence as a Nonstandard Transport Phenomenon

  • Chapter
  • First Online:
The Foundations of Chaos Revisited: From Poincaré to Recent Advancements

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The hydrodynamic time evolution is Hamiltonian in the inertial range (i.e., in the absence of viscosity). From this we obtain that the macroscopic study of hydrodynamic turbulence is equivalent, at an abstract level, to the microscopic study of a heat flow in a nonstandard geometry. In the absence of fluctuations this means that the Kolmogorov theory of turbulence is equivalent to a heat flow for a suitable mechanical system. Turbulent fluctuations (intermittency) correspond to thermal fluctuations for the heat flow. A relatively crude estimate of the thermal fluctuations, based on standard ideas of nonequilibrium statistical mechanics is presented: this agrees remarkably well with what is observed in several turbulence experiments. A logical relation with the lognormal theory of Kolmogorov and Obukhov is also indicated, which shows what fails in this theory, and what can be rescued.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dimensional analysis says how various quantities (like velocity or energy) depend on certain variables (like spatial distance, and time): velocity is spatial distance divided by time, energy is mass times velocity squared, etc. Dimensional analysis appears somewhat trivial, but for the turbulent energy cascade it has led to spectacular predictions.

References

  1. D. Ruelle, Hydrodynamic turbulence as a problem in nonequilibrium statistical mechanics. PNAS 109, 20344–20346 (2012)

    Article  ADS  Google Scholar 

  2. D. Ruelle, Non-equilibrium statistical mechanics of turbulence. J. Stat. Phys. 157, 205–218 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. G. Gallavotti, G. Garrido, Non-equilibrium statistical mechanics of turbulence: comments on Ruelle’s intermittency theory, in The Foundations of Chaos Revisited: From Poincaré to Recent Advancements, ed. by C. Skiadas (Springer, Heidelberg, 2016). doi:10.1007/978-3-319-29701-9

    Google Scholar 

  4. D. Ruelle, F. Takens, On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971) and 23, 343–344 (1971)

    Google Scholar 

  5. J.P. Gollub, H.L. Swinney, Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927–930 (1975)

    Article  ADS  Google Scholar 

  6. A. Libchaber, From chaos to turbulence in Benard convection. Proc. R. Soc. Lond. A413, 63–69 (1987)

    Google Scholar 

  7. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  8. P. Cvitanović (ed.), Universality in Chaos, 2nd edn. (Adam Hilger, Bristol, 1989)

    MATH  Google Scholar 

  9. B.-L. Hao (ed.), Chaos II (World Scientific, Singapore, 1990)

    MATH  Google Scholar 

  10. L.-S. Young, What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Bonatti, L.J. Díaz, M. Viana, Dynamics Beyond Uniform Hyperbolicity (Springer, Berlin, 2005)

    MATH  Google Scholar 

  12. G. Gallavotti, E.G.D. Cohen, Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. D. Dolgopyat, C. Liverani, Energy transfer in a fast-slow Hamiltonian system. Commun. Math. Phys. 308, 201–225 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. D. Ruelle, A mechanical model for Fourier’s law of heat conduction. Commun. Math. Phys. 311, 755–768 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 301–305 (1941)

    ADS  Google Scholar 

  16. A.N. Kolmogorov, On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. Dokl. Akad. Nauk SSSR 31, 538–540 (1941)

    Google Scholar 

  17. A.N. Kolmogorov, Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941)

    ADS  MathSciNet  MATH  Google Scholar 

  18. G. Parisi, U. Frisch, On the singularity structure of fully developed turbulence, in Turbulence and Predictability in Geophysical Fluid Dynamics, ed. by M. Ghil, R. Benzi, G. Parisi (North-Holland, Amsterdam, 1985), pp. 84–88

    Google Scholar 

  19. R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A 17, 3521–3531 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Anselmet, Y. Gagne, E.J. Hopfinger, R.A. Antonia, High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 63–89 (1984)

    Article  ADS  Google Scholar 

  21. J. Schumacher, J. Scheel, D. Krasnov, D. Donzis, K. Sreenivasan, V. Yakhot, Small-scale universality in turbulence. Proc. Natl. Acad. Sci. USA 111(30), 10961–10965 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ruelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruelle, D. (2016). Hydrodynamic Turbulence as a Nonstandard Transport Phenomenon. In: Skiadas, C. (eds) The Foundations of Chaos Revisited: From Poincaré to Recent Advancements. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-29701-9_3

Download citation

Publish with us

Policies and ethics