Skip to main content

A Unified Physical Theory for CSF Circulation, Cooling and Cleaning of the Brain, Sleep, and Head Injuries in Degenerative Cognitive Disorders

Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS,volume 11)

Abstract

Cerebrospinal fluid (CSF) from the basal cisterns transits into the brain through spaces that surround the vascular system of the brain; the so-called paravascular spaces (Virchow Robin Spaces), or paravascular pathway, which surround the arteries, veins, and capillaries. The passage of CSF through these paravascular spaces is driven by the cardiovascular and respiratory systems, and is more active at night during sleep. Their cumulative function is presumed to include the clearance (or “cleaning”) of metabolic wastes, which likely contributes to counteracting metabolic heat, via the “cooling” of the brain. This paravascular CSF transport system might be implicated in CSF shift edema that occurs in head injuries; hence, it may be the rationale behind why opening the cisterns to atmospheric pressure through cisternostomy, quickly decreases post-traumatic brain swelling. When this paravascular system is blocked or becomes somehow dysfunctional, the “cleaning” and “cooling” functions of this system may be impaired or completely stopped. This could result in the accumulation of metabolic wastes that cannot be removed within these spaces. In addition, a faulty brain cooling system might play a role in the modification of the molecular structures of proteins, thereby making them more difficult to be removed by the flow of CSF, thus aggravating the situation. Therefore, this may be a common underlying mechanism for many neurodegenerative disorders, and an aggravation factor for others. This avenue appears to be novel and promising toward the elucidation and treatment of a host of diseases.

Keywords

  • Virchow Robin spaces
  • Paravascular pathway
  • Cleaning
  • Cooling
  • Cisternostomy
  • Degenerative CNS diseases

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-29674-6_34
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-29674-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 34.1
Fig. 34.2
Fig. 34.3
Fig. 34.4

References

  • Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3(1):5–13

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Beggs CB (2013) Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Med 11:142

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Beltran M, Cherian I (2016) “Cooling and Cleaning” the brain – the role of CSF and the paravascular system. Int J Psychol Neurosci 2(1):1–14

    Google Scholar 

  • Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cherian I, Beltran M (2016) Cisternostomy – introducing the concept of “CSF-shift edema”. Int J Psychol Neurosci 2(1):15–29

    Google Scholar 

  • Cherian I, Munakomi S (2013) Review article and surgical technique surgical technique for cisternostomy: a review. Int J Stud Res 3(1):147–148

    CrossRef  Google Scholar 

  • Cherian I, Yi G, Munakomi S (2013) Cisternostomy: replacing the age old decompressive hemicraniectomy? Asian J Neurosurg 8(3):132–138

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cherian I, Bernardo A, Grasso G (2016a) Cisternostomy for traumatic brain injury: pathophysiologic mechanisms and surgical technical notes. World Neurosurg 89:51–57

    CrossRef  PubMed  Google Scholar 

  • Cherian I, Grasso G, Bernardo A, Munakomi S (2016b) Anatomy and physiology of cisternostomy. Chin J Traumatol 19(1):7–10

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chikly B, Quaghebeur J (2013) Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther 17(3):344–354

    CrossRef  PubMed  Google Scholar 

  • CJR D, George S, Brundin P (2013) What’s to like about the prion-like hypothesis for the spreading of aggregated α-synuclein in Parkinson disease? Prion 7(1):92–97

    CrossRef  Google Scholar 

  • Gallina P, Scollato A, Conti R, Di Lorenzo N, Porfirio B (2015) Aβ clearance, “hub” of multiple deficiencies leading to Alzheimer disease. Front Aging Neurosci 7:200

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Greitz D (2006) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neuroradiol J 19(4):475–495

    CrossRef  PubMed  Google Scholar 

  • Hutchings M, Weller RO (1986 Sep) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65(3):316–325

    CAS  CrossRef  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123(3):1299–1309

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34(49):16180–16193

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1(1):2

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kida S (2014) Progress in diagnosis of and therapy for idiopathic normal-pressure hydrocephalus – lymphatic drainage of CSF and ISF from the brain: recent concept and hypothesis. Rinshō Shinkeigaku = Clin Neurol 54(12):1187–1189

    Google Scholar 

  • Kiefer M, Unterberg A (2012 Jan) The differential diagnosis and treatment of normal-pressure hydrocephalus. Dtsch Arztebl Int 109(1–2):15–25

    PubMed  PubMed Central  Google Scholar 

  • Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, Logan J, Nedergaard M, Benveniste H (2015) The effect of body posture on brain glymphatic transport. J Neurosci 35(31):11034–11044

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Linninger AA, Tangen K, Hsu CY, David FD (2016) Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu Rev Fluid Mech 48(1):219–257

    CrossRef  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Maraković J, Oresković D, Rados M, Vukić M, Jurjević I, Chudy D, Klarica M (2010) Effect of osmolarity on CSF volume during ventriculo-aqueductal and ventriculo-cisternal perfusions in cats. Neurosci Lett 484(2):93–97

    CrossRef  PubMed  Google Scholar 

  • Oresković D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64(2):241–262

    CrossRef  PubMed  Google Scholar 

  • Orešković D, Klarica M (2014) A new look at cerebrospinal fluid movement. Fluids Barriers CNS 11:16

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14(4):265–277

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rangroo Thrane V, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, Nagelhus EA, Nedergaard M (2013) Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep 3:2582

    CrossRef  PubMed  Google Scholar 

  • Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2(8):506–511

    CrossRef  PubMed  Google Scholar 

  • Simka M (2015) Recent advances in understanding the lymphatic and glymphatic systems of the brain. Phlebological Rev 23(3):69–71

    CrossRef  Google Scholar 

  • Wagshul ME, Johnston M (2013) The brain and the lymphatic system. In: Santambrogio L (ed) Immunology of the lymphatic system. Springer, New York, pp 143–164

    CrossRef  Google Scholar 

  • Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R (2014) Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 8:307

    PubMed  PubMed Central  Google Scholar 

  • Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117(1):1–14

    CAS  CrossRef  PubMed  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377

    CAS  CrossRef  PubMed  Google Scholar 

  • Yamada S, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, Shimizu S, Aoki I, Morohoshi Y, McComb JG (2013) Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 10(1):36

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure of Interests

The authors declare no conflict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iype Cherian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Cherian, I., Beltran, M. (2017). A Unified Physical Theory for CSF Circulation, Cooling and Cleaning of the Brain, Sleep, and Head Injuries in Degenerative Cognitive Disorders. In: Opris, I., Casanova, M. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_34

Download citation