A Unified Physical Theory for CSF Circulation, Cooling and Cleaning of the Brain, Sleep, and Head Injuries in Degenerative Cognitive Disorders

Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 11)


Cerebrospinal fluid (CSF) from the basal cisterns transits into the brain through spaces that surround the vascular system of the brain; the so-called paravascular spaces (Virchow Robin Spaces), or paravascular pathway, which surround the arteries, veins, and capillaries. The passage of CSF through these paravascular spaces is driven by the cardiovascular and respiratory systems, and is more active at night during sleep. Their cumulative function is presumed to include the clearance (or “cleaning”) of metabolic wastes, which likely contributes to counteracting metabolic heat, via the “cooling” of the brain. This paravascular CSF transport system might be implicated in CSF shift edema that occurs in head injuries; hence, it may be the rationale behind why opening the cisterns to atmospheric pressure through cisternostomy, quickly decreases post-traumatic brain swelling. When this paravascular system is blocked or becomes somehow dysfunctional, the “cleaning” and “cooling” functions of this system may be impaired or completely stopped. This could result in the accumulation of metabolic wastes that cannot be removed within these spaces. In addition, a faulty brain cooling system might play a role in the modification of the molecular structures of proteins, thereby making them more difficult to be removed by the flow of CSF, thus aggravating the situation. Therefore, this may be a common underlying mechanism for many neurodegenerative disorders, and an aggravation factor for others. This avenue appears to be novel and promising toward the elucidation and treatment of a host of diseases.


Virchow Robin spaces Paravascular pathway Cleaning Cooling Cisternostomy Degenerative CNS diseases 


Disclosure of Interests

The authors declare no conflict.


  1. Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3(1):5–13CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beggs CB (2013) Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Med 11:142CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beltran M, Cherian I (2016) “Cooling and Cleaning” the brain – the role of CSF and the paravascular system. Int J Psychol Neurosci 2(1):1–14Google Scholar
  5. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cherian I, Beltran M (2016) Cisternostomy – introducing the concept of “CSF-shift edema”. Int J Psychol Neurosci 2(1):15–29Google Scholar
  7. Cherian I, Munakomi S (2013) Review article and surgical technique surgical technique for cisternostomy: a review. Int J Stud Res 3(1):147–148CrossRefGoogle Scholar
  8. Cherian I, Yi G, Munakomi S (2013) Cisternostomy: replacing the age old decompressive hemicraniectomy? Asian J Neurosurg 8(3):132–138CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cherian I, Bernardo A, Grasso G (2016a) Cisternostomy for traumatic brain injury: pathophysiologic mechanisms and surgical technical notes. World Neurosurg 89:51–57CrossRefPubMedGoogle Scholar
  10. Cherian I, Grasso G, Bernardo A, Munakomi S (2016b) Anatomy and physiology of cisternostomy. Chin J Traumatol 19(1):7–10CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chikly B, Quaghebeur J (2013) Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther 17(3):344–354CrossRefPubMedGoogle Scholar
  12. CJR D, George S, Brundin P (2013) What’s to like about the prion-like hypothesis for the spreading of aggregated α-synuclein in Parkinson disease? Prion 7(1):92–97CrossRefGoogle Scholar
  13. Gallina P, Scollato A, Conti R, Di Lorenzo N, Porfirio B (2015) Aβ clearance, “hub” of multiple deficiencies leading to Alzheimer disease. Front Aging Neurosci 7:200CrossRefPubMedPubMedCentralGoogle Scholar
  14. Greitz D (2006) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neuroradiol J 19(4):475–495CrossRefPubMedGoogle Scholar
  15. Hutchings M, Weller RO (1986 Sep) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65(3):316–325CrossRefPubMedGoogle Scholar
  16. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111CrossRefPubMedPubMedCentralGoogle Scholar
  17. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123(3):1299–1309CrossRefPubMedPubMedCentralGoogle Scholar
  18. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34(49):16180–16193CrossRefPubMedPubMedCentralGoogle Scholar
  19. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1(1):2CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kida S (2014) Progress in diagnosis of and therapy for idiopathic normal-pressure hydrocephalus – lymphatic drainage of CSF and ISF from the brain: recent concept and hypothesis. Rinshō Shinkeigaku = Clin Neurol 54(12):1187–1189Google Scholar
  21. Kiefer M, Unterberg A (2012 Jan) The differential diagnosis and treatment of normal-pressure hydrocephalus. Dtsch Arztebl Int 109(1–2):15–25PubMedPubMedCentralGoogle Scholar
  22. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, Logan J, Nedergaard M, Benveniste H (2015) The effect of body posture on brain glymphatic transport. J Neurosci 35(31):11034–11044CrossRefPubMedPubMedCentralGoogle Scholar
  24. Linninger AA, Tangen K, Hsu CY, David FD (2016) Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu Rev Fluid Mech 48(1):219–257CrossRefGoogle Scholar
  25. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341CrossRefPubMedPubMedCentralGoogle Scholar
  26. Maraković J, Oresković D, Rados M, Vukić M, Jurjević I, Chudy D, Klarica M (2010) Effect of osmolarity on CSF volume during ventriculo-aqueductal and ventriculo-cisternal perfusions in cats. Neurosci Lett 484(2):93–97CrossRefPubMedGoogle Scholar
  27. Oresković D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64(2):241–262CrossRefPubMedGoogle Scholar
  28. Orešković D, Klarica M (2014) A new look at cerebrospinal fluid movement. Fluids Barriers CNS 11:16CrossRefPubMedPubMedCentralGoogle Scholar
  29. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14(4):265–277CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rangroo Thrane V, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, Nagelhus EA, Nedergaard M (2013) Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep 3:2582CrossRefPubMedGoogle Scholar
  31. Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2(8):506–511CrossRefPubMedGoogle Scholar
  32. Simka M (2015) Recent advances in understanding the lymphatic and glymphatic systems of the brain. Phlebological Rev 23(3):69–71CrossRefGoogle Scholar
  33. Wagshul ME, Johnston M (2013) The brain and the lymphatic system. In: Santambrogio L (ed) Immunology of the lymphatic system. Springer, New York, pp 143–164CrossRefGoogle Scholar
  34. Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R (2014) Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 8:307PubMedPubMedCentralGoogle Scholar
  35. Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117(1):1–14CrossRefPubMedGoogle Scholar
  36. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377CrossRefPubMedGoogle Scholar
  37. Yamada S, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, Shimizu S, Aoki I, Morohoshi Y, McComb JG (2013) Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 10(1):36CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Nobel Institute of NeurosciencesNobel Medical College and Teaching HospitalBiratnagarNepal
  2. 2.CHU ReunionParisFrance

Personalised recommendations