Skip to main content

Genetics of the Mind and Brain Disorders

  • Chapter
  • First Online:
The Physics of the Mind and Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

  • 1822 Accesses

Abstract

In stark comparison to the elegance of mathematics, biology lies right at the edges of relative chaos, evading understanding at every turn often refusing to conform to theoretical hypotheses. To a biologist, this is the root of elegance. In particular, the irony of not being able to understand the mind remains enticing to both professional and amateur neuroscientists. Nevertheless, it would behoove the greater understanding of the mind and the disorders that afflict it to establish physical patterns. These can then be used in predicting the treatments that would be most effective.

Understanding of a system can begin with an understanding of its parts in a bottom-up approach. In the system of the mind, similar to any biological system, the “parts” can be the individual cells or organelles that make up a cell. We can also consider the fundamental parts the brain as genes in a code of deoxyribonucleic acid (DNA). A gene is the functional unit of heredity. The study of genetics encompasses both the structure and transmission of genes as well as the individual and combinatorial contributions of genes to development.

When the entirety of human DNA was sequenced by the Human Genome Project in 2003, the end of all genetic disorders, including the ones afflicting the brain, was predicted to be near. Despite the rapid increase in knowledge regarding the workings of genes, questions remain and cures are scarce to this day. While this is due in large part to the unpredicted complexity of gene networks, it is also reflective of the intricacy of the central nervous system (CNS). The CNS itself is a complicated system of networks that are spatiotemporally controlled and kept in balance by specific cell-to-cell contacts, neuromodulators, and electrical relays.

Yet, what is known today about disorders of the mind, and in particular the genetics behind them, provides many rich examples which we can explore to gain a deeper understanding of both of these topics. In this chapter, we will initially provide a perfunctory overview of genetics, and then delve into further detail by discussing two broad categories of genetic mind disorders: monogenic and polygenic. Throughout we will detail the biological forces driving both normal and abnormal neurodevelopment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agrawal A, Lynskey M (2008) Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction 103(7):1069–1081. doi:10.1111/j.1360-0443.2008.02213.x

    Article  Google Scholar 

  • Andrews S, Domínguez J, Mercieca E-C, Georgiou-Karistianis N, Stout J (2015) Cognitive interventions to enhance neural compensation in Huntington’s disease. Neurodegen Dis Manag 5(2):155–164. doi:10.2217/nmt.14.58

    Article  Google Scholar 

  • Barulli D, Stern Y (2013) Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci 17(10):502–509. doi:10.1016/j.tics.2013.08.012

    Article  Google Scholar 

  • Behan AT, Byrne C, Dunn MJ, Cagney G (2009) Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in. Mol Ther. doi:10.1038/mp.2008.7

  • Blackwood DH, Muir WJ (2004) Clinical phenotypes associated with DISC1, a candidate gene for schizophrenia. Neurotox Res 6(1):35–41

    Article  CAS  Google Scholar 

  • Casanova MF, van Kooten IA, Switala AE, van Engeland H, Heinsen H, Steinbusch HW, Hof PR, Trippe J, Stone J, Schmitz C (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112(3):287–303

    Article  Google Scholar 

  • Casanova MF, Trippe J, Switala A (2007) A temporal continuity to the vertical organization of the human neocortex. Cereb Cortex 17(1):130–137

    Article  Google Scholar 

  • Casanova MF, Kreczmanski P, Trippe J, Switala A, Heinsen H, Steinbusch HW, Schmitz C (2008) Neuronal distribution in the neocortex of schizophrenic patients. Psychiatry Res 158(3):267–277

    Article  Google Scholar 

  • Donaldson ZR, Nautiyal KM, Ahmari SE, Hen R (2013) Genetic approaches for understanding the role of serotonin receptors in mood and behavior. Curr Opin Neurobiol 23(3):399–406

    Article  CAS  Google Scholar 

  • Eichler EE, Holden J., Popovich BW, Reiss AL (1994) Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nature http://www.nature.com/ng/journal/v8/n1/abs/ng0994-88.html

  • Götz M, Huttner W (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788. doi:10.1038/nrm1739

    Article  CAS  Google Scholar 

  • Hutsler JJ, Love T, Zhang H (2007) Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 61(4):449–457. doi:10.1016/j.biopsych.2006.01.015

    Article  Google Scholar 

  • Jin P, Warren S (2000) Understanding the molecular basis of Fragile X syndrome. Hum Mol Genet 9(6):901–908. doi:10.1093/hmg/9.6.901

    Article  CAS  Google Scholar 

  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M (2011) Spatio-temporal transcriptome of the human brain. Nature. doi:10.1038/nature10523

  • Keightley PD (2012) Rates and fitness consequences of new mutations in humans. Genetics Soc America 190(2):295–304. doi:10.1534/genetics.111.134668

    Article  Google Scholar 

  • Kong A, Frigge M, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson S, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong W, Sigurdsson G, Walters B, Steinberg S, Helgason H, Thorleifsson G, Gudbjartsson D, Helgason A, Magnusson O, Thorsteinsdottir U, Stefansson K (2012) Rate of de novo mutations and the importance of father/‘s age to disease risk. Nature 488(7412):471–475. doi:10.1038/nature11396

    Article  CAS  Google Scholar 

  • Koyama Y, Hattori T, Nishida T, Hori O, Tohyama M (2015) Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1-binding zinc finger protein (DBZ) knockout mice. Front Neuroanat 9. doi:10.3389/fnana.2015.00052

  • Kwan KY, Šestan N, Anton ES (2012) Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139:1535

    Article  CAS  Google Scholar 

  • Lee C, Occhipinti P, Gladfelter AS (2015) PolyQ-dependent RNA–protein assemblies control symmetry breaking. J Cell Biol. doi:10.1083/jcb.201407105

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. doi:10.1146/annurev.neuro.25.112701.142754

  • Lipson M, Loh P-R, Sankararaman S, Patterson N, Berger B, Reich D (2015) Calibrating the human mutation rate via ancestral recombination density in diploid genomes. PLoS Genet 11(11):e1005550. doi:10.1371/journal.pgen.1005550

    Article  CAS  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies S, Bates G (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506. doi:10.1016/s0092-8674(00)81369-0

    Article  CAS  Google Scholar 

  • Martin D, Ladha S, Ehrnhoefer D, Hayden M (2015) Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 38(1):26–35. doi:10.1016/j.tins.2014.09.003

    Article  CAS  Google Scholar 

  • Molyneaux B, Arlotta P, Menezes J, Macklis J (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8(6):427–437. doi:10.1038/nrn2151

    Article  CAS  Google Scholar 

  • Morcom A, Johnson W (2015) Neural reorganization and compensation in aging. J Cogn Neurosci 27(7):1275–1285. doi:10.1162/jocn_a_00783

    Article  Google Scholar 

  • Nautiyal KM, Tanaka KF, Barr MM, Tritschler L, Le Dantec Y, David DJ, Gardier AM, Blanco C, Hen R, Ahmari SE (2015) Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity. Neuron 86(3):813–826

    Article  CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409(6821):714–720. doi:10.1038/35055553

    Article  CAS  Google Scholar 

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137(Pt 7):1863–1875

    Article  Google Scholar 

  • Papoutsi M, Labuschagne I, Tabrizi S, Stout J (2014) The cognitive burden in Huntington’s disease: pathology, phenotype, and mechanisms of compensation. Mov Disord 29(5):673–683. doi:10.1002/mds.25864

    Article  Google Scholar 

  • Penn D, Damjanovich K, Potts W (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci 99(17):11260–11264. doi:10.1073/pnas.162006499

    Article  CAS  Google Scholar 

  • Petersén Å, Larsen K, Behr G, Romero N, Przedborski S, Brundin P, Sulzer D (2001) Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet 10(12):1243–1254. doi:10.1093/hmg/10.12.1243

    Article  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science (New York, NY) 241(4862): 170–176

    Article  CAS  Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. doi:10.1038/nrn2719

  • Ravasi T, Suzuki H, Cannistraci C, Katayama S, Bajic V, Tan K, Akalin A, Schmeier S, Kanamori-Katayama M, Bertin N, Carninci P, Daub C, Forrest A, Gough J, Grimmond S, Han J-H, Hashimoto T, Hide W, Hofmann O, Kamburov A, Kaur M, Kawaji H, Kubosaki A, Lassmann T, van Nimwegen E, MacPherson C, Ogawa C, Radovanovic A, Schwartz A, Teasdale R, Tegnér J, Lenhard B, Teichmann S, Arakawa T, Ninomiya N, Murakami K, Tagami M, Fukuda S, Imamura K, Kai C, Ishihara R, Kitazume Y, Kawai J, Hume D, Ideker T, Hayashizaki Y (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140(5):744–752. doi:10.1016/j.cell.2010.01.044

    Article  CAS  Google Scholar 

  • Richards RI, Sutherland GR (1994) Simple repeat DNA is not replicated simply. Nat Genet 6(2):114–116. doi:10.1038/ng0294-114

    Article  CAS  Google Scholar 

  • Saudou F, Humbert S (2016) The biology of Huntingtin. Neuron 89(5):910–926. doi:10.1016/j.neuron.2016.02.003

    Article  CAS  Google Scholar 

  • Sekar A, Bialas A, de Rivera H, Davis A, Hammond T, Kamitaki N, Tooley K, Presumey J, Baum M, Doren V, Genovese G, Rose S, Handsaker R, Daly M, Carroll M, Stevens B, McCarroll S (2016) Schizophrenia risk from complex variation of complement component 4. Nature. doi:10.1038/nature16549

  • Sellis D, Callahan B, Petrov D, Messer P (2011) Heterozygote advantage as a natural consequence of adaptation in diploids. Proc Natl Acad Sci 108(51):20666–20671. doi:10.1073/pnas.1114573108

    Article  Google Scholar 

  • Sherman SL (2000) Premature ovarian failure in the Fragile X syndrome. Am J Med Genet 97(3):189–194

    Article  CAS  Google Scholar 

  • Siegert S, Seo J, Kwon E, Rudenko A, Cho S, Wang W, Flood Z, Martorell A, Ericsson M, Mungenast A, Tsai L-H (2015) The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci 18(7):1008–1016. doi:10.1038/nn.4023

    Article  CAS  Google Scholar 

  • Stoner R, Chow M, Boyle M, Sunkin S, Mouton P, Roy S, Wynshaw-Boris A, Colamarino S, Lein E, Courchesne E (2014) Patches of disorganization in the neocortex of children with autism. N Engl J Med 370(13):1209–1219. doi:10.1056/NEJMoa1307491

    Article  CAS  Google Scholar 

  • Suhl J, Warren S, Suhl J (2015) Single-nucleotide mutations in FMR1 reveal novel functions and regulatory mechanisms of the Fragile X syndrome protein FMRP. J Exp Neurosci 9(Suppl 2):35. doi:10.4137/jen.s25524

    Article  CAS  Google Scholar 

  • Sullivan P, Daly M, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13(8):537–551. doi:10.1038/nrg3240

    Article  CAS  Google Scholar 

  • Usdin K (2008) The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 18(7):1011–1019. doi:10.1101/gr.070409.107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen-Roko Rasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popovitchenko, T., Rasin, MR. (2017). Genetics of the Mind and Brain Disorders. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_28

Download citation

Publish with us

Policies and ethics