Skip to main content

An Overview of the Parameterization Method for Invariant Manifolds

  • Chapter
  • First Online:
Book cover The Parameterization Method for Invariant Manifolds

Part of the book series: Applied Mathematical Sciences ((AMS,volume 195))

Abstract

This introductory chapter starts by providing an overview of the literature of the parameterization method. After that, it introduces unified formulations of the parameterization method for invariant manifolds of fixed points and for invariant tori in different contexts. These formulations are the basis of the subsequent chapters. This chapter can be considered a reading guide of the rest of the book.

À. Haro acknowledges support from the Spanish grants MTM2009-09723, MTM2012-32541 and MTM2015-67724-P, and the Catalan grants 2009-SGR-67 and 2014-SGR-1145.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In double precision, a \(15000 \times 15000\) matrix uses 1.7 GB of memory and an Intel Core i5 requires more than 4 minutes to solve such a system using the LAPACK library.

  2. 2.

    We can also consider the more general case in which \(F: \mathcal{A}_{0} \rightarrow \mathcal{A}_{1}\) is a smooth map between two open sets \(\mathcal{A}_{0},\mathcal{A}_{1} \subset \mathcal{A}\), and \(K:\varTheta \rightarrow \mathcal{A}_{0} \cap \mathcal{A}_{1}\). We do not consider this generality for the sake of notational simplicity.

  3. 3.

    In Computer Science, an online algorithm is one that can process its input piece-by-piece in a serial fashion, i.e., in the order that the input is fed to the algorithm, without having the entire input available from the start. In contrast, an offline algorithm is given the whole problem data from the beginning and is required to output an answer which solves the problem at hand.

  4. 4.

    With a slight abuse of notation, we will not make notational distinctions among coordinates in \(\mathbb{T}^{d}\), \(\mathcal{A}\) and their corresponding covering spaces \(\mathbb{R}^{d}\), \(\tilde{\mathcal{A}}\), and between mappings with those domains and codomains and their corresponding lifts to the appropriate covering spaces.

References

  1. D. V. Anosov, S. Kh. Aranson, V. I. Arnold, I. U. Bronshtein, Yu. S. Il’yashenko, and V. Z. Grines, Ordinary differential equations and smooth dynamical systems, Springer-Verlag New York, Inc., New York, NY, USA, 1997.

    Google Scholar 

  2. G. Arioli and H. Koch, The critical renormalization fixed point for commuting pairs of area-preserving maps, Comm. Math. Phys. 295 (2010), no. 2, 415–429.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. A. Adomaitis, I. G. Kevrekidis, and R., A computer-assisted study of global dynamic transitions for a noninvertible system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17 (2007), no. 4, 1305–1321.

    Google Scholar 

  4. R. Aris, I. G. Kevrekidis, S. Pelikan, and L. D. Schmidt, Numerical computation of invariant circles of maps, Phys. D 16 (1985), no. 2, 243–251.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209.

    MathSciNet  Google Scholar 

  6. V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 13–40.

    Google Scholar 

  7. V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 250, Springer-Verlag, New York, 1983, Translated from the Russian by Joseph Szücs, Translation edited by Mark Levi.

    Google Scholar 

  8. W.-J. Beyn, A. Champneys, E. Doedel, W. Govaerts, Y.A. Kuznetsov, and B. Sandstede, Numerical continuation, and computation of normal forms, Handbook of dynamical systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 149–219.

    MATH  Google Scholar 

  9. I. Baldomá, E. Fontich, R. de la Llave, and P. Martín, The parameterization method for one-dimensional invariant manifolds of higher dimensional parabolic fixed points, Discrete Contin. Dyn. Syst. 17 (2007), no. 4, 835–865.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Baldomá, E. Fontich, and P. Martín, Invariant manifolds of parabolic fixed points (I). existence and dependence of parameters, 2015.

    Google Scholar 

  11. W.-J. Beyn, Invariant manifolds of parabolic fixed points (II). approximations by sums of homogeneous functions, 2015.

    Google Scholar 

  12. I. Baldomá and A. Haro, One dimensional invariant manifolds of Gevrey type in real-analytic maps, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), no. 2–3, 295–322.

    MathSciNet  MATH  Google Scholar 

  13. H. W. Broer, G. B. Huitema, and M. B. Sevryuk, Quasi-periodic motions in families of dynamical systems. Order amidst chaos, Lecture Notes in Math., Vol 1645, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  14. H. W. Broer, A. Hagen, and G. Vegter, Numerical continuation of normally hyperbolic invariant manifolds, Nonlinearity 20 (2007), no. 6, 1499–1534.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. P. Brent and H. T. Kung, Fast algorithms for manipulating formal power series, J. Assoc. Comput. Mach. 25 (1978), no. 4, 581–595.

    Article  MathSciNet  MATH  Google Scholar 

  16. W.-J. Beyn and W. Kleß, Numerical Taylor expansions of invariant manifolds in large dynamical systems, Numer. Math. 80 (1998), no. 1, 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. N. Bogoliubov and Yu. A. Mitropolsky, The method of integral manifolds in nonlinear mechanics, Contributions to Differential Equations 2 (1963), 123–196 (1963).

    MathSciNet  Google Scholar 

  18. H. W. Broer, H. M. Osinga, and G. Vegter, Algorithms for computing normally hyperbolic invariant manifolds, Z. Angew. Math. Phys. 48 (1997), no. 3, 480–524.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. W. Broer, C. Simó, and J.-C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms, Nonlinearity 11 (1998), 667–770.

    Article  MathSciNet  MATH  Google Scholar 

  20. CAPD: Computer Assisted Proofs in Dynamics group. Accessed March 14, 2016, http://capd.ii.uj.edu.pl/download.php.

  21. A. Celletti and L. Chierchia, Construction of Analytic KAM Surfaces and Effective Stability Bounds, Comm. Math. Phys. 118 (1988), no. 1, 199–161.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Coffey, A. Deprit, E. Deprit, L. Healy, and B. R. Miller, A toolbox for nonlinear dynamics, Computer aided proofs in analysis. (Cincinnati, OH, 1989) (Kenneth R. Meyer and Dieter S. Schmidt, eds.), IMA Vol. Math. Appl., vol. 28, Springer-Verlag, New York, 1991, pp. 97–115.

    Google Scholar 

  23. M. J. Capiński, A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification, Nonlinearity 23 (2010), no. 9, 2029–2058.

    Article  MathSciNet  MATH  Google Scholar 

  24. X. Cabré and E. Fontich, Regularity and uniqueness of one dimensional invariant manifolds. Accessed March 14, 2016, http://www.maia.ub.es/dsg/1994/9401Cabre.pdf, 1994.

  25. X. Cabré, E. Fontich, and R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J. 52 (2003), no. 2, 283–328.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. J. Capiński, The parameterization method for invariant manifolds. II. Regularity with respect to parameters, Indiana Univ. Math. J. 52 (2003), no. 2, 329–360.

    Article  MathSciNet  Google Scholar 

  27. M. J. Capiński, The parameterization method for invariant manifolds. III. Overview and applications, J. Differential Equations 218 (2005), no. 2, 444–515.

    Article  MathSciNet  Google Scholar 

  28. M. Canadell and A. Haro, Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, F. Casas, V. Martínez (eds.), Advances in Differential Equations and Applications, SEMA SIMAI Springer Series, vol. 4, Springer, 2014.

    Google Scholar 

  29. M. J. Capiński, A KAM-like theorem for quasi-periodic normally hyperbolic invariant tori, Preprint, 2015.

    Google Scholar 

  30. M. J. Capiński, Parameterization methods for computing quasi-periodic normally hyperbolic invariant tori: algorithms and numerical explorations, In progress, 2015.

    Google Scholar 

  31. T. N. Chan, Numerical bifurcation analysis of simple dynamical systems, Ph.D. thesis, Department of Computer Science, Concordia University, 1983.

    Google Scholar 

  32. CHOMP: Computational Homology Project. Accessed March 14, 2016, http://chomp.rutgers.edu/index.html.

  33. E. Castellà and À. Jorba, On the vertical families of two-dimensional tori near the triangular points of the bicircular problem, Celestial Mech. Dynam. Astronom. 76 (2000), no. 1, 35–54.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Castelli, J.-P. Lessard, and J. D. Mireles James, Parameterization of invariant manifolds for periodic orbits I: Efficient numerics via the Floquet normal form, SIAM J. Appl. Dyn. Syst. 14 (2015), no. 1, 132–167.

    Article  MathSciNet  MATH  Google Scholar 

  35. COSY INFINITY. Accessed March 14, 2016, http://www.bt.pa.msu.edu/index_cosy.htm.

  36. M.J. Capiński and C. Simó, Computer assisted proof for normally hyperbolic invariant manifolds, Nonlinearity 25 (2012), 1997–2026.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Dieci and G. Bader, Solution of the systems associated with invariant tori approximation. II. Multigrid methods, SIAM J. Sci. Comput. 15 (1994), no. 6, 1375–1400.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Delshams, R. de la Llave, and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model, Mem. Amer. Math. Soc. 179 (2006), no. 844, viii+141.

    Google Scholar 

  39. M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math. 75 (1997), no. 3, 293–317.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Delshams and G. Huguet, Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems, Nonlinearity 22 (2009), no. 8, 1997–2077.

    Article  MathSciNet  MATH  Google Scholar 

  41. S. P. Diliberto, Perturbation theorems for periodic surfaces. I. Definitions and main theorems, Rend. Circ. Mat. Palermo (2) 9 (1960), 265–299.

    Google Scholar 

  42. C. Díez, À. Jorba, and C. Simó, A dynamical equivalent to the equilateral libration points of the real Earth-Moon system, Celestial Mech. 50 (1991), no. 1, 13–29.

    Article  MATH  Google Scholar 

  43. E. Doedel, H. B. Keller, and J.-P. Kernévez, Numerical analysis and control of bifurcation problems. I. Bifurcation in finite dimensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1 (1991), no. 3, 493–520.

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Dieci and J. Lorenz, Block M-matrices and computation of invariant tori, SIAM J. Sci. Statist. Comput. 13 (1992), no. 4, 885–903.

    Article  MathSciNet  MATH  Google Scholar 

  45. S. P. Diliberto, Computation of invariant tori by the method of characteristics, SIAM J. Numer. Anal. 32 (1995), no. 5, 1436–1474.

    Article  MathSciNet  Google Scholar 

  46. S. P. Diliberto, Invariant manifolds associated to nonresonant spectral subspaces, J. Statist. Phys. 87 (1997), no. 1–2, 211–249.

    MathSciNet  MATH  Google Scholar 

  47. S. P. Diliberto, A tutorial on KAM theory, Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 175–292.

    Google Scholar 

  48. R. de la Llave, A. González, À. Jorba, and J. Villanueva, KAM theory without action-angle variables, Nonlinearity 18 (2005), no. 2, 855–895.

    Article  MathSciNet  MATH  Google Scholar 

  49. R. de la Llave and J. D. Mireles James, Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps, Discrete Contin. Dyn. Syst. 32 (2012), no. 12, 4321–4360.

    Article  MathSciNet  MATH  Google Scholar 

  50. R. de la Llave and D. Rana, Accurate strategies for small divisor problems, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 85–90.

    Google Scholar 

  51. S. P. Diliberto, Accurate strategies for K.A.M. bounds and their implementation, Computer aided proofs in analysis (Cincinnati, OH, 1989), IMA Vol. Math. Appl., vol. 28, Springer, New York, 1991, pp. 127–146.

    Google Scholar 

  52. L. Dieci, J. Lorenz, and R. D. Russell, Numerical calculation of invariant tori, SIAM J. Sci. Statist. Comput. 12 (1991), no. 3, 607–647.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Delshams and R. Ramírez-Ros, Singular separatrix splitting and the Melnikov method: an experimental study, Experiment. Math. 8 (1999), no. 1, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  54. K. D. Edoh, R. D. Russell, and W. Sun, Computation of invariant tori by orthogonal collocation, Appl. Numer. Math. 32 (2000), no. 3, 273–289.

    Article  MathSciNet  MATH  Google Scholar 

  55. E. Fontich, R. de la Llave, and Y. Sire, Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions, J. Differential Equations 246 (2009), no. 8, 3136–3213.

    Article  MathSciNet  MATH  Google Scholar 

  56. N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/1972), 193–226.

    Google Scholar 

  57. J. E. Fornæss and E. A. Gavosto, Existence of generic homoclinic tangencies for Hénon mappings, J. Geom. Anal. 2 (1992), no. 5, 429–444.

    Article  MathSciNet  MATH  Google Scholar 

  58. J.-Ll. Figueras and A. Haro, Reliable computation of robust response tori on the verge of breakdown, SIAM J. Appl. Dyn. Syst. 11 (2012), 597–628.

    Google Scholar 

  59. J.-Ll. Figueras, A. Haro, and A. Luque, Rigorous computer assisted application of KAM theory: a modern approach. Preprint available at arXiv:1601.00084.

    Google Scholar 

  60. M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE 93 (2005), no. 2, 216–231, Special issue on “Program Generation, Optimization, and Platform Adaptation”.

    Google Scholar 

  61. A. M. Fox and J. D. Meiss, Critical invariant circles in asymmetric and multiharmonic generalized standard maps, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 4, 1004–1026.

    Article  MathSciNet  Google Scholar 

  62. V. Franceschini and L. Russo, Stable and unstable manifolds of the Hénon mapping, J. Statist. Phys. 25 (1981), no. 4, 757–769.

    Article  MathSciNet  MATH  Google Scholar 

  63. C. Froesché, Numerical study of a four-dimensional mapping, Astron. Astrophys. 16 (1972), 172–189.

    MathSciNet  Google Scholar 

  64. E. Fontich and C. Simó, The Splitting of Separatrices for Analytic Diffeomorphism, Ergod. Th. and Dynam. Sys. 10 (1990), 295–318.

    MATH  Google Scholar 

  65. G. Giorgilli and L. Galgani, Formal integrals for an autonomous hamiltonian system near an equilibrium point, Cel. Mech. 17 (1978), 267–280.

    Article  MathSciNet  MATH  Google Scholar 

  66. J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1990, Revised and corrected reprint of the 1983 original.

    Google Scholar 

  67. A. González, A. Haro, and R. de la Llave, An introduction to singularity theory for non-twist KAM tori, In progress.

    Google Scholar 

  68. C. L. Fefferman and L. A. Seco, Singularity theory for non-twist KAM tori, Mem. Amer. Math. Soc. 227 (2014), no. 1067, vi+115.

    Google Scholar 

  69. A. Giorgilli, A computer program for integrals of motion, Comp. Phys. Comm. 16 (1979), 331–343.

    Article  Google Scholar 

  70. G. Gómez, À. Jorba, J. Masdemont, and C. Simó, Study refinement of semi-analytical halo orbit theory, Tech. report, European Space Agency, 1991.

    Google Scholar 

  71. G. Gómez, À. Jorba, C. Simó, and J. Masdemont, Dynamics and mission design near libration point orbits - volume III: Advanced methods for collinear points, World Scientific Monograph Series in Mathematics, vol. 4, World Scientific Publishing Co. Inc., River Edge, NJ, 2001. Reprint of ESA Report Study Refinement of Semi-Analytical Halo Orbit Theory, 1991.

    Google Scholar 

  72. T. Ge and A. Y. T. Leung, Construction of invariant torus using Toeplitz Jacobian matrices/fast Fourier transform approach, Nonlinear Dynam. 15 (1998), no. 3, 283–305.

    Article  MathSciNet  MATH  Google Scholar 

  73. M. Gastineau and J. Laskar, Development of trip: Fast sparse multivariate polynomial multiplication using burst tries, International Conference on Computational Science (2), 2006, pp. 446–453.

    Google Scholar 

  74. G. Gómez and J. M. Mondelo, The dynamics around the collinear equilibrium points of the RTBP, Phys. D 157 (2001), no. 4, 283–321.

    Article  MathSciNet  MATH  Google Scholar 

  75. P. Gomis-Porqueras and A. Haro, A geometric description of a macroeconomic model with a center manifold, J. Econom. Dynam. Control 33 (2009), no. 6, 1217–1235.

    Article  MathSciNet  MATH  Google Scholar 

  76. V. Gelfreich and C. Simó, High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), no. 2–3, 511–536.

    MathSciNet  MATH  Google Scholar 

  77. V. Gelfreich, C. Simó, and A. Vieiro, Dynamics of 4d symplectic maps near a double resonance, Physica D 243 (2013), no. 1, 92–110.

    Article  MathSciNet  MATH  Google Scholar 

  78. J. Guckenheimer and A. Vladimirsky, A fast method for approximating invariant manifolds, SIAM Journal of Applied Dynamical Systems 3 (2004), 2004.

    Article  MathSciNet  MATH  Google Scholar 

  79. A. Griewank and A. Walther, Evaluating derivatives, second ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008, Principles and techniques of algorithmic differentiation.

    Google Scholar 

  80. J. Hadamard, Sur l’itération et les solutions asymptotiques des équations différentielles., S. M. F. Bull. 29 (1901), 224–228 (French).

    Google Scholar 

  81. J. K. Hale, Integral manifolds of perturbed differential systems, Ann. of Math. (2) 73 (1961), 496–531.

    Google Scholar 

  82. J. K. Hale, Center and center-(un)stable manifolds of elliptic-hyperbolic fixed points of 4D-symplectic maps. An example: the Froeschlé map, Hamiltonian systems with three or more degrees of freedom (S’Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Kluwer Acad. Publ., Dordrecht, 1999, pp. 403–407.

    Google Scholar 

  83. J. K. Hale, An algorithm to generate canonical transformations: application to normal forms, Phys. D 167 (2002), no. 3–4, 197–217.

    MathSciNet  Google Scholar 

  84. J. K. Hale, Automatic differentiation tools in computational dynamical systems, 2008, Lectures in the Advanced School on Specific Algebraic Manipulators (Barcelona, September 12–15, 2007).

    Google Scholar 

  85. J. K. Hale, Automatic differentiation tools in computational dynamical systems: invariant manifolds and normal forms of vector fields at fixed points, 2011, Lectures in the IMA New directions short course Invariant Objects in Dynamical Systems and their Applications (Minnesota, June 20-July 1, 2011).

    Google Scholar 

  86. A. Haro and R. de la Llave, Persistence of normally hyperbolic invariant manifolds, In progress.

    Google Scholar 

  87. J. K. Hale, Manifolds on the verge of a hyperbolicity breakdown, Chaos 16 (2006), 013120.

    Article  MathSciNet  MATH  Google Scholar 

  88. J. K. Hale, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 6, 1261–1300.

    Google Scholar 

  89. J. K. Hale, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results, J. Differential Equations 228 (2006), no. 2, 530–579.

    Article  MathSciNet  MATH  Google Scholar 

  90. J. K. Hale, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst. 6 (2007), no. 1, 142–207 (electronic).

    Google Scholar 

  91. G. Huguet and R. de la Llave, Computation of limit cycles and their isochrons: Fast algorithms and their convergence, SIAM J. Appl. Dyn. Syst. 12 (2013), no. 4, 1763–1802.

    Article  MathSciNet  MATH  Google Scholar 

  92. G. Huguet, R. de la Llave, and Y. Sire, Computation of whiskered invariant tori and their associated manifolds: new fast algorithms, Discrete Contin. Dyn. Syst. 32 (2012), no. 4, 1309–1353.

    MathSciNet  MATH  Google Scholar 

  93. M. E. Henderson, Multiple parameter continuation: computing implicitly defined k-manifolds, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 3, 451–476.

    Article  MathSciNet  MATH  Google Scholar 

  94. M. E. Henderson, Computing invariant manifolds by integrating fat trajectories, SIAM J. Appl. Dyn. Syst. 4 (2005), no. 4, 832–882 (electronic).

    Google Scholar 

  95. M. E. Henderson, Flow box tiling methods for compact invariant manifolds, SIAM J. Appl. Dyn. Syst. 10 (2011), no. 3, 1154–1176.

    Article  MathSciNet  MATH  Google Scholar 

  96. M. Huang, T. Küpper, and N. Masbaum, Computation of invariant tori by the Fourier methods, SIAM J. Sci. Comput. 18 (1997), no. 3, 918–942.

    Article  MathSciNet  MATH  Google Scholar 

  97. A. Haro, J. M. Mondelo, and B. F. Villac, Dynamical characterization of 1:1 resonance crossing trajectories at Vesta, Paper AAS 12–131, 22nd AAS/AIAA Space Flight Mechanics Meeting, January 29 - February 2, Charleston, South Carolina, USA, 2012.

    Google Scholar 

  98. A. J. Homburg, Invariant manifolds near hyperbolic fixed points, J. Difference Equ. Appl. 12 (2006), no. 10, 1057–1068.

    Article  MathSciNet  MATH  Google Scholar 

  99. A. Haro and J. Puig, Strange nonchaotic attractors in Harper maps, Chaos 16 (2006), 033127.

    Article  MathSciNet  MATH  Google Scholar 

  100. M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  101. G. Huguet, The role of hyperbolic invariant objects: from Arnold difussion to biological clocks, Ph.D. thesis, Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, 2008.

    Google Scholar 

  102. M. E. Johnson, M. S. Jolly, and I. G. Kevrekidis, Two-dimensional invariant manifolds and global bifurcations: some approximation and visualization studies, Numer. Algorithms 14 (1997), no. 1–3, 125–140, Dynamical numerical analysis (Atlanta, GA, 1995).

    Google Scholar 

  103. J. Jarník and J. Kurzweil, On invariant sets and invariant manifolds of differential systems, J. Differential Equations 6 (1969), 247–263.

    Article  MathSciNet  MATH  Google Scholar 

  104. À. Jorba and J. Masdemont, Dynamics in the center manifold of the collinear points of the restricted three body problem, Phys. D 132 (1999), no. 1–2, 189–213.

    Article  MathSciNet  MATH  Google Scholar 

  105. À. Jorba and M. Ollé, Invariant curves near Hamiltonian-Hopf bifurcations of four-dimensional symplectic maps, Nonlinearity 17 (2004), no. 2, 691–710.

    Article  MathSciNet  MATH  Google Scholar 

  106. À. Jorba and E. Olmedo, On the computation of reducible invariant tori on a parallel computer, SIAM J. Appl. Dyn. Syst. 8 (2009), no. 4, 1382–1404.

    Article  MathSciNet  MATH  Google Scholar 

  107. À. Jorba, A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems, Experiment. Math. 8 (1999), no. 2, 155–195.

    Article  MathSciNet  MATH  Google Scholar 

  108. A. Y. Jalnine and A. H. Osbaldestin, Numerical computation of the normal behaviour of invariant curves of n-dimensional maps, Nonlinearity 14 (2001), no. 5, 943–976.

    Article  MathSciNet  Google Scholar 

  109. L. Kantorovitch and G. Akilov, Analyse fonctionnelle. Tome 2, “Mir”, Moscow, 1981, Équations fonctionnelles. [Functional equations], Translated from the second Russian edition by Djilali Embarek.

    Google Scholar 

  110. A. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations 3 (1967), 546–570.

    Article  MathSciNet  MATH  Google Scholar 

  111. A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995, With a supplementary chapter by Katok and Leonardo Mendoza.

    Google Scholar 

  112. T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational homology, Applied Mathematical Sciences, vol. 157, Springer-Verlag, New York, 2004.

    MATH  Google Scholar 

  113. D. E. Knuth, The art of computer programming. Vol. 2: Seminumerical algorithms, third revised ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1997.

    Google Scholar 

  114. B. Krauskopf and H. M. Osinga, Globalizing two-dimensional unstable manifolds of maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 8 (1998), no. 3, 483–503.

    Article  MathSciNet  MATH  Google Scholar 

  115. D. E. Knuth, Existence of critical invariant tori, Ergodic Theory Dynam. Systems 28 (2008), no. 6, 1879–1894.

    Article  MathSciNet  MATH  Google Scholar 

  116. B. Krauskopf, H. M. Osinga, E. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz, and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 3, 763–791.

    Article  MathSciNet  MATH  Google Scholar 

  117. A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 527–530, Translated in p. 51–56 of Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Como 1977 (eds. G. Casati and J. Ford) Lect. Notes Phys. 93, Springer, Berlin, 1979.

    Google Scholar 

  118. J. A. Ketoja and I. I. Satija, Self-Similarity and Localization, Phys. Rev. Lett. 75 (1995), no. 14, 2762–2765.

    Article  Google Scholar 

  119. J. A. Ketoja and I. I. Satija, Harper equation, the dissipative standard map and strange nonchaotic attractors: relationship between an eigenvalue problem and iterated maps, Phys. D 109 (1997), no. 1–2, 70–80, Physics and dynamics between chaos, order, and noise (Berlin, 1996).

    Google Scholar 

  120. H. Koch, A. Schenkel, and P. Wittwer, Computer-assisted proofs in analysis and programming in logic: a case study, SIAM Rev. 38 (1996), no. 4, 565–604.

    Article  MathSciNet  MATH  Google Scholar 

  121. W. T. Kyner, Invariant manifolds, Rend. Circ. Mat. Palermo (2) 10 (1961), 98–110.

    Google Scholar 

  122. O. E. Lanford, III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 427–434.

    Google Scholar 

  123. O. E. Lanford, Computer-assisted proofs in analysis, Phys. A 124 (1984), no. 1–3, 465–470, Mathematical physics, VII (Boulder, Colo., 1983).

    Google Scholar 

  124. O. E. Lanford, A shorter proof of the existence of the Feigenbaum fixed point, Comm. Math. Phys. 96 (1984), no. 4, 521–538.

    Article  MathSciNet  MATH  Google Scholar 

  125. J. Laskar, Manipulation des séries, Modern Methods in Celestial Mechanics, Comptes Rendus de la 13ieme Ecole Printemps d’Astrophysique de Goutelas (France), 24–29 Avril, 1989. Edited by Daniel Benest and Claude Froeschlé. Gif-sur-Yvette: Editions Frontieres, 1990., p.285 (1990), 89–108.

    Google Scholar 

  126. J. Lorenz and A. Morlet, Numerical solution of a functional equation on a circle, SIAM J. Numer. Anal. 29 (1992), no. 6, 1741–1768.

    Article  MathSciNet  MATH  Google Scholar 

  127. J.-P. Lessard, J. D. Mireles James, and C. Reinhardt, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations 26 (2014), no. 2, 267–313.

    Article  MathSciNet  MATH  Google Scholar 

  128. Yu. D. Latushkin and A. M. Stëpin, A KAM theorem without action-angle variables for elliptic lower dimensional tori, Nonlinearity 24 (2011), no. 4, 1033–1080.

    Article  MathSciNet  Google Scholar 

  129. A. M. Lyapunov, The general problem of the stability of motion, Internat. J. Control 55 (1992), no. 3, 521–790, Translated by A. T. Fuller from Édouard Davaux’s French translation (1907) of the 1892 Russian original, With an editorial (historical introduction) by Fuller, a biography of Lyapunov by V. I. Smirnov, and the bibliography of Lyapunov’s works collected by J. F. Barrett, Lyapunov centenary issue.

    Google Scholar 

  130. R. Mañé, Persistent manifolds are normally hyperbolic, Trans. Amer. Math. Soc. 246 (1978), 261–283.

    Article  MathSciNet  MATH  Google Scholar 

  131. J. N. Mather, Characterization of Anosov diffeomorphisms, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968), 479–483.

    Google Scholar 

  132. J. M. Mondelo, E. Barrabés, G. Gómez, and M. Ollé, Numerical parametrisations of libration point trajectories and their invariant manifolds, AAS/AIAA Astrodynamics Specialists Conference, AAS, 2007.

    Google Scholar 

  133. J. M. Mondelo, Fast numerical computation of Lissajous and quasi-halo libration point trajectories and their invariant manifolds, Paper IAC-12, C1, 6, 9, x14982. 63rd International Astronautical Congress, Naples, Italy, 2012.

    Google Scholar 

  134. J. D. Mireles James, Quadratic volume-preserving maps: (un)stable manifolds, hyperbolic dynamics, and vortex-bubble bifurcations, J. Nonlinear Sci. 23 (2013), no. 4, 585–615.

    Article  MathSciNet  MATH  Google Scholar 

  135. J. D. Mireles James, Computer assisted error bounds for linear approximation of (un)stable manifolds and rigorous validation of higher dimensional transverse connecting orbits, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), no. 1–3, 1102–1133.

    Article  MathSciNet  MATH  Google Scholar 

  136. J. D. Mireles James, Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds, Indag. Math. (N.S.) 26 (2015), no. 1, 225–265.

    Google Scholar 

  137. J. D. Mireles James and H. Lomelí, Computation of heteroclinic arcs with application to the volume preserving Hénon family, SIAM J. Appl. Dyn. Syst. 9 (2010), no. 3, 919–953.

    Article  MathSciNet  MATH  Google Scholar 

  138. J. D. Mireles James and K. Mischaikow, Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps, SIAM J. Appl. Dyn. Syst. 12 (2013), no. 2, 957–1006.

    Article  MathSciNet  MATH  Google Scholar 

  139. J. D. Mireles James and, Computational proofs in dynamics, Encyclopedia of Applied Computational Mathematics (E. Björn, ed.), Springer-Verlag, Berlin, 2015, p. 1676.

    Google Scholar 

  140. R. E. Moore, Computation and parameterisation of invariant curves and tori, SIAM J. Numer. Anal. 33 (1996), no. 6, 2333–2358.

    Article  MathSciNet  MATH  Google Scholar 

  141. J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20.

    MathSciNet  MATH  Google Scholar 

  142. R. E. Moore, On a theorem of Anosov, J. Differential Equations 5 (1969), 411–440.

    Article  MathSciNet  Google Scholar 

  143. B. D. Mestel, A. H. Osbaldestin, and B. Winn, Golden mean renormalization for the Harper equation: the strong coupling fixed point, J. Math. Phys. 41 (2000), no. 12, 8304–8330.

    Article  MathSciNet  MATH  Google Scholar 

  144. K. R. Meyer and D. S. Schmidt (eds.), Computer aided proofs in analysis, The IMA Volumes in Mathematics and its Applications, vol. 28, New York, Springer-Verlag, 1991.

    Google Scholar 

  145. R. Martínez and C. Simó, Invariant manifolds at infinity of the RTBP and the boundaries of bounded motion, Regul. Chaotic Dyn. 19 (2014), no. 6, 745–765.

    Article  MathSciNet  MATH  Google Scholar 

  146. J. Murdock, Normal forms and unfoldings for local dynamical systems, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.

    Book  MATH  Google Scholar 

  147. S. Newhouse, M. Berz, J. Grote, and K. Makino, On the estimation of topological entropy on surfaces, Geometric and probabilistic structures in dynamics, Contemp. Math., vol. 469, Amer. Math. Soc., Providence, RI, 2008, pp. 243–270.

    Google Scholar 

  148. V. A. Pliss, A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1297–1324.

    MathSciNet  MATH  Google Scholar 

  149. H. Poincaré, Sur une classe nouvelle de transcendentes uniformes, Jour. de Math. 6 (1890), 313–365.

    Google Scholar 

  150. V. A. Pliss, On invariant manifolds of complex analytic mappings near fixed points, Exposition. Math. 4 (1986), no. 2, 97–109.

    MathSciNet  Google Scholar 

  151. B. Rasmussen and L. Dieci, A geometrical method for the approximation of invariant tori, J. Comput. Appl. Math. 216 (2008), no. 2, 388–412.

    Article  MathSciNet  MATH  Google Scholar 

  152. V. Reichelt, Computing invariant tori and circles in dynamical systems, Numerical methods for bifurcation problems and large-scale dynamical systems (Minneapolis, MN, 1997), IMA Vol. Math. Appl., vol. 119, Springer, New York, 2000, pp. 407–437.

    Google Scholar 

  153. A. Rom, Mechanized algebraic operations (mao), Celestial mechanics 1 (1970), no. 3–4, 301–319 (English).

    Article  MathSciNet  MATH  Google Scholar 

  154. R. J. Sacker, A new approach to the perturbation theory of invariant surfaces, Comm. Pure Appl. Math. 18 (1965), 717–732.

    Article  MathSciNet  MATH  Google Scholar 

  155. R. J. Sacker, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech. 18 (1969), 705–762.

    MathSciNet  MATH  Google Scholar 

  156. J. Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc. 289 (1985), no. 2, 431–469.

    Article  MathSciNet  MATH  Google Scholar 

  157. C. Simó, On the Analytical and Numerical Approximation of Invariant Manifolds, Modern Methods in Celestial Mechanics, Comptes Rendus de la 13ieme Ecole Printemps d’Astrophysique de Goutelas (France), 24–29 Avril, 1989. Edited by Daniel Benest and Claude Froeschlé. Gif-sur-Yvette: Editions Frontieres, 1990., p.285 (1990), 285–330.

    Google Scholar 

  158. M. B. Sevryuk, Effective computations in Hamiltonian dynamics, Mécanique céleste, SMF Journ. Annu., vol. 1996, Soc. Math. France, Paris, 1996, p. 23.

    Google Scholar 

  159. M. B. Sevryuk, Effective computations in celestial mechanics and astrodynamics, Modern methods of analytical mechanics and their applications (Udine, 1997), CISM Courses and Lectures, vol. 387, Springer, Vienna, 1998, pp. 55–102.

    Google Scholar 

  160. F. Schilder, H. M. Osinga, and W. Vogt, Continuation of quasi-periodic invariant tori, SIAM J. Appl. Dyn. Syst. 4 (2005), no. 3, 459–488 (electronic).

    Google Scholar 

  161. B. Sandstede and T. Theerakarn, Regularity of center manifolds via the graph transform, Journal of Dynamics and Differential Equations (2015), 1–18 (English).

    Google Scholar 

  162. S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math. 79 (1957), 809–824.

    Article  MathSciNet  MATH  Google Scholar 

  163. E. M. Standish, On the structure of local homeomorphisms of euclidean n-space. II., Amer. J. Math. 80 (1958), 623–631.

    Article  MathSciNet  Google Scholar 

  164. F. Schilder, W. Vogt, S. Schreiber, and H. M. Osinga, Fourier methods for quasi-periodic oscillations, Internat. J. Numer. Methods Engrg. 67 (2006), no. 5, 629–671.

    Article  MathSciNet  MATH  Google Scholar 

  165. F. Takens, Normal forms for certain singularities of vectorfields, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 2, 163–195, Colloque International sur l’Analyse et la Topologie Différentielle (Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1972).

    Google Scholar 

  166. M. R. Trummer, Spectral methods in computing invariant tori, Appl. Numer. Math. 34 (2000), no. 2–3, 275–292, Auckland numerical ordinary differential equations (Auckland, 1998).

    Google Scholar 

  167. W. Tucker, The Lorenz attractor exists, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 12, 1197–1202.

    Article  MathSciNet  MATH  Google Scholar 

  168. M. R. Trummer, A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math. 2 (2002), no. 1, 53–117.

    Article  MathSciNet  MATH  Google Scholar 

  169. J. B. van den Berg, J. D. Mireles James, J.-P. Lessard, and K. Mischaikow, Rigorous numerics for symmetric connecting orbits: even homoclinics of the Gray-Scott equation, SIAM J. Math. Anal. 43 (2011), no. 4, 1557–1594.

    Article  MathSciNet  MATH  Google Scholar 

  170. A. Wittig, Rigorous high-precision enclosures of fixed points and their invariant manifolds, Ph.D. thesis, Department of Physics and Astronomy, Michigan State University, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haro, À. (2016). An Overview of the Parameterization Method for Invariant Manifolds. In: The Parameterization Method for Invariant Manifolds. Applied Mathematical Sciences, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-29662-3_1

Download citation

Publish with us

Policies and ethics