Towards Model-Driven Simulation of the Internet of Things

  • Mihal BrumbulliEmail author
  • Emmanuel Gaudin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 426)


The Internet of Things (IoT) refers to the networked interconnection of objects equipped with ubiquitous intelligence, or simply “smart objects”. The “smart” part is often followed by words like grid, home, parking, etc., to identify the application domain, and it is provided by software applications and/or services running on top of these large-scale distributed communication infrastructures. Heterogeneity and distribution scale speak for the complexity of such systems and call for a careful analysis prior to any deployment on target environments. In this paper we introduce a model-driven approach for the analysis of IoT applications via simulation. Standard modeling languages, code generation, and network simulation and visualization are combined into an integrated development environment for rapid and automated analysis.


Modeling Deployment Simulation IoT SDL ns-3 


  1. 1.
    Brambilla, G., Picone, M., Cirani, S., Amoretti, M., Zanichelli, F.: A Simulation Platform for Large-scale Internet of Things Scenarios in Urban Environments. In: Kawsar, F., Blanke, U., Mashhadi, A.J., Altakrouri, B. (eds.) The First International Conference on IoT in Urban Space. pp. 50–55. Urb-IoT ‘14, ICST (2014)Google Scholar
  2. 2.
    Breslau, L., Estrin, D., Fall, K.R., Floyd, S., Heidemann, J.S., Helmy, A., Huang, P., McCanne, S., Varadhan, K., Xu, Y., Yu, H.: Advances in network simulation. IEEE Comput. 33(5), 59–67 (2000)CrossRefGoogle Scholar
  3. 3.
    Brumbulli, M., Fischer, J.: SDL Code Generation for Network Simulators. In: Kraemer, F., Herrmann, P. (eds.) System Analysis and Modeling: About Models. Lecture Notes in Computer Science, vol. 6598, pp. 144–155. Springer, Berlin/ Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Brumbulli, M., Fischer, J.: Simulation Visualization of Distributed Communication Systems. In: Rose, O., Uhrmacher, A.M. (eds.) Proceedings of the 2012 Winter Simulation Conferenc, pp. 248:1–248:12. WSC ‘12, IEEE (2012)Google Scholar
  5. 5.
    Brumbulli, M., Fischer, J.: Simulation Configuration Modeling of Distributed Communication Systems. In: Haugen, Ø., Reed, R., Gotzhein, R. (eds.) System Analysis and Modeling: Theory and Practice. Lecture Notes in Computer Science, vol. 7744, pp. 198–211. Springer, Berlin Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Deltour, J., Faivre, A., Gaudin, E., Lapitre, A.: Model-Based Testing: An Approach with SDL/RTDS and DIVERSITY. In: Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) System Analysis and Modeling: Models and Reusability, Lecture Notes in Computer Science, vol. 8769, pp. 198–206. Springer International Publishing (2014)Google Scholar
  7. 7.
    Dietrich, I., Dressler, F., Schmitt, V., German, R.: Syntony: Network Protocol Simulation Based on Standard-Conform UML 2 Models. In: Glynn, P. (ed.) Proceedings of the 2nd International Conference on Performance Evaluation Methodologies and Tools. pp. 21:1–21:11. ValueTools ‘07, ICST, Brussels, Belgium (2007)Google Scholar
  8. 8.
    Dunkels, A., Grönvall, B., Voigt, T.: Contiki: A Lightweight and Flexible Operating System for Tiny Networked Sensors. In: Proceedings of 29th Annual IEEE International Conference on Local Computer Networks. pp. 455–462. LCN ‘04. IEEE Computer Society (2004)Google Scholar
  9. 9.
    ETSI: Machine-to-Machine communications (M2M); Functional architecture. ETSI Technical Specification TS 102 690, European Telecommunications Standards Institute. (2013)
  10. 10.
    Fischer, J., Redlich, J.P., Zschau, J., Milkereit, C., Picozzi, M., Fleming, K., Brumbulli, M., Lichtblau, B., Eveslage, I.: A wireless mesh sensing network for early warning. J. Netw. Comput. Appl. 35(2), 538–547 (2012)CrossRefGoogle Scholar
  11. 11.
    Gartner Inc.: Gartner says the Internet of Things installed base will grow to 26 billion units by 2020. (2013)
  12. 12.
    Gaudin, E., Brunel, E.: Property Verification with MSC. In: Khendek, F., Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013: Model-Driven Dependability Engineering. Lecture Notes in Computer Science, vol. 7916, pp. 19–35. Springer, Berlin Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Geng, Y., Cassandras, C.: New “smart parking” system based on resource allocation and reservations. IEEE Trans. Intell. Transp. Syst. 14(3), 1129–1139 (2013)CrossRefGoogle Scholar
  14. 14.
    Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafindralambo, T.: A survey on facilities for experimental internet of things research. IEEE Commun. Mag. 49(11), 58–67 (2011)CrossRefGoogle Scholar
  15. 15.
    Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: ns-3 Project Goals. In: Proceedings of the 2006 Workshop on ns-2: The IP Network Simulator. p. 9. WNS2 ‘06. ACM, New York (2006)Google Scholar
  16. 16.
    IEEE: IEEE Standard for Local and metropolitan area networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Standard 802.15.4, Institute of Electrical and Electronics Engineers. (2011)
  17. 17.
    IETF: Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks. Standards Track RFC 6282, Internet Engineering Task Force. (2011)
  18. 18.
    ITU-T: Message Sequence Chart (MSC). ITU-T Recommendation Z.120, International Telecommunication Union—Telecommunication Standardization Sector. (2002)
  19. 19.
    ITU-T: Specification and Description Language—Overview of SDL-2010. ITU-T Recommendation Z.100, International Telecommunication Union—Telecommunication Standardization Sector. (2011)
  20. 20.
    ITU-T: Overview of the Internet of Things. ITU-T Recommendation Y.2060, International Telecommunication Union—Telecommunication Standardization Sector. (2012)
  21. 21.
    ITU-T: Testing and Test Control Notation version 3: TTCN-3 core language. ITU-T Recommendation Z.161, International Telecommunication Union—Telecommunication Standardization Sector. (2014)
  22. 22.
    Kuhn, T., Gotzhein, R., Webel, C.: Model-Driven Development with SDL: Process, Tools, and Experiences. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) Model Driven Engineering Languages and Systems. Lecture Notes in Computer Science, vol. 4199, pp. 83–97. Springer, Berlin Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Kuhn, T., Geraldy, A., Gotzhein, R., Rothländer, F.: ns + SDL: The Network Simulator for SDL Systems. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005: Model Driven. Lecture Notes in Computer Science, vol. 3530, pp. 1166–1170. Springer, Berli (2005)Google Scholar
  24. 24.
    Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E., Culler, D.: TinyOS: An Operating System for Sensor Networks. In: Weber, W., Rabaey, J., Aarts, E. (eds.) Ambient Intelligence, pp. 115–148. Springer, Berlin (2005)CrossRefGoogle Scholar
  25. 25.
    Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications. In: Akyildiz, I.F., Estrin, D., Culler, D.E., Srivastava, M.B. (eds.) Proceedings of the 1st International Conference on Embedded Networked Sensor Systems. pp. 126–137. SenSys ‘03. ACM, New York (2003)Google Scholar
  26. 26.
    OMG: OMG Unified Modeling Language (OMG UML), Superstructure. Version 2.4.1. OMG Standard, Object Management Group (2011)Google Scholar
  27. 27.
    Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-Level Sensor Network Simulation with COOJA. In: Proceedings of the 31st IEEE Conference on Local Computer Networks. pp. 641–648. LCN ‘06. IEEE Computer Society (2006)Google Scholar
  28. 28.
    Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun. ACM 55(4), 86–97 (2012)CrossRefGoogle Scholar
  29. 29.
    Schaible, P., Gotzhein, R.: Development of Distributed Systems with SDL by Means of Formalized APIs. In: Reed, R., Reed, J. (eds.) SDL 2003: System Design. Lecture Notes in Computer Science, vol. 2708, pp. 158–158. Springer, Berlin (2003)Google Scholar
  30. 30.
    SDL-RT Consortium: Specification and Description Language—Real Time. SDL-RT Standard V2.3, SDL-RT Consortium. (2013)
  31. 31.
    Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25 (2003)CrossRefGoogle Scholar
  32. 32.
    Silva, L.C.D., Morikawa, C., Petra, I.M.: State of the art of smart homes. Eng. Appl. Artif. Intell. 25(7), 1313–1321 (2012)CrossRefGoogle Scholar
  33. 33.
    Tazaki, H., Urbani, F., Mancini, E., Lacage, M., Câmara, D., Turletti, T., Dabbous, W.: Direct Code Execution: Revisiting Library OS Architecture for Reproducible Network Experiments. In: Almeroth, K.C., Mathy, L., Papagiannaki, K., Misra, V. (eds.) Proceedings of the 9th ACM Conference on Emerging Networking Experiments and Technologies. pp. 217–228. CoNEXT ‘13. ACM (2013)Google Scholar
  34. 34.
    Varga, A., Hornig, R.: An Overview of the OMNeT ++ Simulation Environment. In: Molnár, S., Heath, J.R., Dalle, O., Wainer, G.A. (eds.) Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems. p. 60. SimuTools ‘08, ICST, Brussels, Belgium (2008)Google Scholar
  35. 35.
    Weingärtner, E., Ceriotti, M., Wehrle, K.: How to simulate the internet of things? In: Proceedings of the 11th GI/ITG KuVS Fachgespräch Drahtlose Sensornetze. pp. 27–28. FGSN ‘12. Technische Universität Darmstadt (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.PragmaDevParisFrance

Personalised recommendations