Skip to main content

Multinary Metal Oxide Photoelectrodes

  • Chapter
  • First Online:
Photoelectrochemical Solar Fuel Production

Abstract

Metal oxides are an intriguing class of materials that can potentially enable large-scale solar fuel production via photoelectrochemical (PEC) water splitting. Binary metal oxides, consisting of a single type of metal combined with oxygen, have been studied as photoelectrode materials for decades. Unfortunately, these materials have not yet enabled efficient and stable PEC water splitting due to their inherent limitations in light absorption, stability, and carrier transport. Recently, more complex, multinary metal oxides, composed of at least two metals and oxygen, have shown promise as photoelectrode materials. In many cases, the multinary metal oxides have shown fewer material limitations and higher photoelectrochemical efficiencies than their binary counterparts. The number of available material combinations is much greater for multinary metal oxides, and many combinations have not yet been explored. In this chapter, we discuss the crystal structure and electronic, optical, and photoelectrochemical properties of several n- and p-type complex metal oxides that can potentially be used as photoelectrode materials. We summarize the current research status of these materials and discuss their future outlook. In addition, we explain how these multinary metal oxides might be employed in a tandem photoelectrochemical device to relax the stringent material requirements for PEC water splitting and allow for higher efficiencies. Lastly, we discuss some to the challenges of using multinary metal oxides as photoelectrode materials along with future work that still needs to be completed for this class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi FF, van de Krol R (2012) Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J Phys Chem C 116(17):9398

    Article  Google Scholar 

  • Abdi FF, Firet N, Dabirian A, van de Krol R (2012) Spray-deposited Co-Pi catalyzed BiVO4: a low-cost route towards highly efficient photoanodes. MRS Online Proc Lib 1446

    Google Scholar 

  • Abdi FF, Firet N, van de Krol R (2013a) Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. ChemCatChem 5(2):490–496

    Article  Google Scholar 

  • Abdi FF, Han L, Smets AHM, Zeman M, Dam B, van de Krol R (2013b) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:2195

    Google Scholar 

  • Abdi FF, Savenije TJ, May MM, Dam B, van de Krol R (2013c) The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J Phys Chem Lett 4(16):2752

    Article  Google Scholar 

  • Abdi FF, Chemseddine A, Berglund SP, van de Krol R (in preparation) Assessing the suitability of iron tungstate (Fe2WO6) photoelectrode for water oxidation

    Google Scholar 

  • Abe R, Higashi M, Domen K (2010) Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J Am Chem Soc 132(34):11828

    Article  Google Scholar 

  • Aharon‐Shalom E, Heller A (1982) Efficient p‐InP(Rh-H alloy) and p-InP(Re‐H alloy) hydrogen evolving photocathodes. J Electrochem Soc 129(12):2865

    Article  Google Scholar 

  • Anderson AY, Bouhadana Y, Barad H-N, Kupfer B, Rosh-Hodesh E, Aviv H, Tischler YR, Rühle S, Zaban A (2014) Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu–O compounds in all-oxide device libraries. ACS Comb Sci 16(2):53

    Article  Google Scholar 

  • Arai T, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J Comb Chem 9(4):574

    Article  Google Scholar 

  • Arora S, Mathew T, Batra N (1989) Optical characterization of CuWO4 single crystals. J Phys Chem Solids 50(7):665

    Article  Google Scholar 

  • Azarpira A, Lublow M, Steigert A, Bogdanoff P, Greiner D, Kaufmann CA, Krüger M, Gernert U, van de Krol R, Fischer A, Schedel-Niedrig T (2015) Efficient and stable TiO2:Pt–Cu(In,Ga)Se2 composite photoelectrodes for visible light driven hydrogen evolution. Adv Energy Mater 5(12):1402148

    Google Scholar 

  • Azevedo J, Steier L, Dias P, Stefik M, Sousa C, Araújo J, Mendes A, Graetzel M, Tilley S (2014) On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Environ Sci 7(12):4044

    Article  Google Scholar 

  • Béa H, Bibes M, Barthélémy A, Bouzehouane K, Jacquet E, Khodan A, Contour J-P, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D, Viret M (2005) Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl Phys Lett 87(7):072508

    Article  Google Scholar 

  • Benko FA, Koffyberg FP (1987) Opto-electronic properties of p- and n-type delafossite, CuFeO2. J Phys Chem Solids 48(5):431

    Article  Google Scholar 

  • Berglund SP, Flaherty DW, Hahn NT, Bard AJ, Mullins CB (2011) Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J Phys Chem C 115(9):3794

    Article  Google Scholar 

  • Berglund SP, Lee HC, Nunez PD, Bard AJ, Mullins CB (2013) Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Phys Chem Chem Phys 15(13):4554

    Article  Google Scholar 

  • Berglund SP, Abdi FF, van de Krol R (in preparation) Evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting

    Google Scholar 

  • Bharati R, Singh R (1981) The electrical properties of Fe2WO6. J Mater Sci 16(2):511

    Article  Google Scholar 

  • Bharati R, Shanker R, Singh R (1980) Electrical transport properties of CuWO4. Pramana 14(6):449

    Article  Google Scholar 

  • Bharati R, Singh R, Yadava Y (1983) Electrical conduction in copper tungstate. J Mater Sci Lett 2(10):623

    Article  Google Scholar 

  • Bhattacharya AK, Mallick KK, Hartridge A (1997) Phase transition in BiVO4. Mater Lett 30(1):7

    Article  Google Scholar 

  • Bierlein JD, Sleight AW (1975) Ferroelasticity in BiVO4. Solid State Commun 16(1):69

    Article  Google Scholar 

  • Bohra D, Smith WA (2015) Improved charge separation via Fe-doping of copper tungstate photoanodes. Phys Chem Chem Phys 17(15):9857

    Article  Google Scholar 

  • Bornoz P, Abdi FF, Tilley SD, Dam B, Van De Krol R, Graetzel M, Sivula K (2014) A bismuth vanadate–cuprous oxide tandem cell for overall solar water splitting. J Phys Chem C 118(30):16959

    Article  Google Scholar 

  • Brillet J, Yum JH, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Graetzel M, Sivula K (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Photon 6(12):824

    Article  Google Scholar 

  • Castelli IE, Olsen T, Datta S, Landis DD, Dahl S, Thygesen KS, Jacobsen KW (2012) Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ Sci 5(2):5814

    Article  Google Scholar 

  • Castelli IE, Hüser F, Pandey M, Li H, Thygesen KS, Seger B, Jain A, Persson KA, Ceder G, Jacobsen KW (2015) New light-harvesting materials using accurate and efficient bandgap calculations. Adv Energy Mater 5(2):1400915

    Google Scholar 

  • Chang Y, Braun A, Deangelis A, Kaneshiro J, Gaillard N (2011) Effect of thermal treatment on the crystallographic, surface energetics, and photoelectrochemical properties of reactively cosputtered copper tungstate for water splitting. J Phys Chem C 115(51):25490

    Article  Google Scholar 

  • Chen L, Shet S, Tang H, Ahn K-S, Wang H, Yan Y, Turner J, Al-Jassim M (2010a) Amorphous copper tungsten oxide with tunable band gaps. J Appl Phys 108(4):043502

    Article  Google Scholar 

  • Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN (2010b) Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res 25(01):3

    Article  Google Scholar 

  • Chen Y-S, Manser JS, Kamat PV (2015) All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. J Am Chem Soc 137(2):974

    Article  Google Scholar 

  • Cherepy NJ, Liston DB, Lovejoy JA, Deng HM, Zhang JZ (1998) Ultrafast studies of photoexcited electron dynamics in gamma- and alpha-Fe2O3 semiconductor nanoparticles. J Phys Chem B 102(5):770

    Article  Google Scholar 

  • Choi SK, Choi W, Park H (2013) Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys Chem Chem Phys 15(17):6499–6507

    Article  Google Scholar 

  • Chun W-J, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, Kawai M, Matsumoto Y, Domen K (2003) Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J Phys Chem B 107(8):1798

    Article  Google Scholar 

  • Cooper JK, Gul S, Toma FM, Chen L, Glans P-A, Guo J, Ager JW, Yano J, Sharp ID (2014) Electronic structure of monoclinic BiVO4. Chem Mater 26(18):5365

    Article  Google Scholar 

  • Cooper JK, Gul S, Toma FM, Chen L, Liu Y-S, Guo J, Ager JW, Yano J, Sharp ID (2015) Indirect bandgap and optical properties of monoclinic bismuth vanadate. J Phys Chem C 119(6):2969

    Article  Google Scholar 

  • Dabirian A, van de Krol R (2015) High-temperature ammonolysis of thin film Ta2O5 photoanodes: evolution of structural, optical, and photoelectrochemical properties. Chem Mater 27(3):708

    Article  Google Scholar 

  • Dabirian A, Van’t Spijker H, van de Krol R (2012) Wet ammonia synthesis of semiconducting N:Ta2O5, Ta3N5 and β-TaON films for photoanode applications. Energy Proc 22:15

    Article  Google Scholar 

  • de Respinis M, Fravventura M, Abdi FF, Schreuders H, Savenije TJ, Smith WA, Dam B, van de Krol R (2015) Oxynitrogenography: the controlled synthesis of high quality single phase tantalum oxynitride photoanodes. Chem Mater 27(20):7091–7099

    Article  Google Scholar 

  • Ding C, Shi J, Wang D, Wang Z, Wang N, Liu G, Xiong F, Li C (2013a) Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys Chem Chem Phys 15(13):4589

    Article  Google Scholar 

  • Ding K, Chen B, Fang Z, Zhang Y (2013b) Density functional theory study on the electronic and optical properties of three crystalline phases of BiVO4. Theor Chem Acc 132(5):1

    Article  Google Scholar 

  • Ding K, Chen B, Fang Z, Zhang Y, Chen Z (2014) Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: a comprehensive density functional study. Phys Chem Chem Phys 16(26):13465

    Article  Google Scholar 

  • Doumerc JP, Hejtmanek J, Chaminade JP, Pouchard M, Krussanova M (1984) A photoelectrochemical study of CuWO4 single crystals. Phys Stat Sol A 82(1):285

    Article  Google Scholar 

  • Dreyer G, Tillmanns E (1981) Dreyerite—natural, tetragonal bismuth vanadate from Hirschhorn-Pfalz. Neues JB Miner Monat 4:151

    Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37

    Article  Google Scholar 

  • Fuoco L, Joshi UA, Maggard PA (2012) Preparation and photoelectrochemical properties of p-type Cu5Ta11O30 and Cu3Ta7O19 semiconducting polycrystalline films. J Phys Chem C 116(19):10490

    Article  Google Scholar 

  • Gaillard N, Chang Y, DeAngelis A, Higgins S, Braun A (2013) A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting. Int J Hydrogen Energy 38(8):3166

    Article  Google Scholar 

  • Galembeck A, Alves O (2000) BiVO4 thin film preparation by metalorganic decomposition. Thin Solid Films 365(1):90

    Article  Google Scholar 

  • Gerischer H (1977) On the stability of semiconductor electrodes against photodecomposition. J Electroanal Chem 82(1–2):133

    Article  Google Scholar 

  • Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5(11):909

    Article  Google Scholar 

  • Gu J, Wuttig A, Krizan JW, Hu Y, Detweiler ZM, Cava RJ, Bocarsly AB (2013) Mg-Doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J Phys Chem C 117(24):12415

    Article  Google Scholar 

  • Hahn NT, Holmberg VC, Korgel BA, Mullins CB (2012) Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes. J Phys Chem C 116(10):6459

    Article  Google Scholar 

  • Haije W, Geerlings H (2011) Efficient production of solar fuel using existing large scale production technologies. Environ Sci Technol 45(20):8609

    Article  Google Scholar 

  • Han L, Abdi FF, van de Krol R, Liu R, Huang Z, Lewerenz HJ, Dam B, Zeman M, Smets AH (2014) Efficient water‐splitting device based on a bismuth vanadate photoanode and thin‐film silicon solar cells. ChemSusChem 7(10):2832

    Article  Google Scholar 

  • Hara M, Hitoki G, Takata T, Kondo JN, Kobayashi H, Domen K (2003) TaON and Ta3N5 as new visible light driven photocatalysts. Catal Today 78(1–4):555

    Article  Google Scholar 

  • Harrison W, Chowdhry U, Machiels C, Sleight A, Cheetham A (1985) Preparation of ferric tungstate and its catalytic behavior toward methanol. J Solid State Chem 60(1):101

    Article  Google Scholar 

  • Helaili N, Mitran G, Popescu I, Bachari K, Marcu I-C, Boudjemaa A (2015) Photoelectrochemical properties of AFe2O4 (A = Co, Cu, Zn) ferrospinels for water photo-reduction. J Electroanal Chem 742:47

    Article  Google Scholar 

  • Henmi C (1995) Kusachiite, CuBi2O4, a new mineral from Fuka, Okayama Prefecture. Japan Miner Mag 59(3):545

    Article  Google Scholar 

  • Herron JA, Kim J, Upadhye AA, Huber GW, Maravelias CT (2015) A general framework for the assessment of solar fuel technologies. Energy Environ Sci 8(1):126

    Article  Google Scholar 

  • Higashi M, Domen K, Abe R (2012) Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J Am Chem Soc 134(16):6968

    Article  Google Scholar 

  • Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4(5):1781

    Article  Google Scholar 

  • Huda MN, Al-Jassim MM, Turner JA (2011) Mott insulators: an early selection criterion for materials for photoelectrochemical H2 production. IRESR 3(5):053101

    Google Scholar 

  • Ida S, Yamada K, Matsunaga T, Hagiwara H, Matsumoto Y, Ishihara T (2010) Preparation of p-Type CaFe2O4 photocathodes for producing hydrogen from water. J Am Chem Soc 132(49):17343

    Article  Google Scholar 

  • Ivano EC, Juan María G-L, Falco H, Kristian ST, Karsten WJ (2013) Stability and bandgaps of layered perovskites for one- and two-photon water splitting. New J Phys 15(10):105026

    Article  Google Scholar 

  • Jain A, Castelli I, Hautier G, Bailey D, Jacobsen K (2013a) Performance of genetic algorithms in search for water splitting perovskites. J Mater Sci 48(19):6519

    Article  Google Scholar 

  • Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013b) Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1(1):011002

    Article  Google Scholar 

  • Jin J, Walczak K, Singh MR, Karp C, Lewis NS, Xiang C (2014) An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy Environ Sci 7(10):3371

    Article  Google Scholar 

  • Jo WJ, Jang JW, Kong K, Kang HJ, Kim JY, Jun H, Parmar KPS, Lee JS (2012) Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew Chem Int Ed 51(13):3147

    Article  Google Scholar 

  • Joshi UA, Maggard PA (2012) CuNb3O8: a p-type semiconducting metal oxide photoelectrode. J Phys Chem Lett 3(11):1577

    Article  Google Scholar 

  • Joshi UA, Palasyuk AM, Maggard PA (2011) Photoelectrochemical investigation and electronic structure of a p-type CuNbO3 photocathode. J Phys Chem C 115(27):13534

    Article  Google Scholar 

  • Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J Phys Chem B 105(19):4285

    Article  Google Scholar 

  • Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128(49):15714

    Article  Google Scholar 

  • Khader MM, Saleh MM, El-Naggar EM (1998) Photoelectrochemical characteristics of ferric tungstate. J Solid State Electrochem 2(3):170

    Article  Google Scholar 

  • Khyzhun OY, Strunskus T, Cramm S, Solonin YM (2005) Electronic structure of CuWO4: XPS, XES and NEXAFS studies. J Alloys Compd 389(1):14

    Article  Google Scholar 

  • Khyzhun OY, Bekenev V, Solonin YM (2009) First-principles calculations and X-ray spectroscopy studies of the electronic structure of CuWO4. J Alloys Compd 480(2):184

    Article  Google Scholar 

  • Kihlborg L, Gebert E (1970) CuWO4, a distorted wolframite-type structure. Acta Cryst B Struct Sci 26(7):1020

    Article  Google Scholar 

  • Kim TW, Choi K-S (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174):990

    Article  Google Scholar 

  • Kohtani S, Makino S, Kudo A, Tokumura K, Ishigaki Y, Matsunaga T, Nikaido O, Hayakawa K, Nakagaki R (2002) Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: comparison between BiVO4 and TiO2 photocatalysts. Chem Lett 7:660

    Article  Google Scholar 

  • Kröger FA (1964) The chemistry of imperfect crystals. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Kudo A, Ueda K, Kato H, Mikami I (1998) Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal Lett 53(3–4):229

    Article  Google Scholar 

  • Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121(49):11459

    Article  Google Scholar 

  • Leiva H, Dwight K, Wold A (1982) Preparation and characterization of conducting iron tungstates. J Solid State Chem 42(1):41

    Article  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103(43):15729

    Article  Google Scholar 

  • Lichterman MF, Shaner MR, Handler SG, Brunschwig BS, Gray HB, Lewis NS, Spurgeon JM (2013) Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. J Phys Chem Lett 4(23):4188

    Article  Google Scholar 

  • Long M, Cai W, Cai J, Zhou B, Chai X, Wu Y (2006) Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J Phys Chem B 110(41):20211

    Article  Google Scholar 

  • Long MC, Cai WM, Kisch H (2008) Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-CO3O4. J Phys Chem C 112(2):548

    Article  Google Scholar 

  • Luo WJ, Yang ZS, Li ZS, Zhang JY, Liu JG, Zhao ZY, Wang ZQ, Yan SC, Yu T, Zou ZG (2011) Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ Sci 4(10):4046

    Article  Google Scholar 

  • Ma J, Wang L-W (2014) The role of the isolated 6s states in BiVO4 on the electronic and atomic structures. Appl Phys Lett 105(17):172102

    Article  Google Scholar 

  • Marsen B, Cole B, Miller EL (2008) Photoelectrolysis of water using thin copper gallium diselenide electrodes. Sol Energy Mater Sol Cells 92(9):1054

    Article  Google Scholar 

  • Mavroides JG, Kafalas JA, Kolesar DF (1976) Photoelectrolysis of water in cells with SrTiO3 anodes. Appl Phys Lett 28(5):241

    Article  Google Scholar 

  • McDowell MT, Lichterman MF, Spurgeon JM, Hu S, Sharp ID, Brunschwig BS, Lewis NS (2014) Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. J Phys Chem C 118(34):19618

    Article  Google Scholar 

  • McKone JR, Pieterick AP, Gray HB, Lewis NS (2013) Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. J Am Chem Soc 135(1):223

    Article  Google Scholar 

  • Miller EL (2013) Task 26: Advanced materials for waterphotolysis. Final Report IEA Hydrogen Implementing Agreement, Washington, DC, p 14

    Google Scholar 

  • Morales-Guio CG, Liardet L, Mayer MT, Tilley SD, Grätzel M, Hu X (2015) Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angew Chem Int Ed 54(2):664

    Google Scholar 

  • Nakato Y, Tonomura S, Tsubomura H (1976) The catalytic effect of electrodeposited metals on the photo-reduction of water at p-type semiconductors. Ber Bunsenges Phys Chem 80(12):1289

    Article  Google Scholar 

  • Newhouse PF, Parkinson BA (2015) Combinatorial optimization of spinel Co3-xMxO4 M = (Al, Ga, In) alloyed thin films prepared by ink jet printing: photoelectrochemical, optical, and structural properties. J Mater Chem A 3(11):5901

    Article  Google Scholar 

  • Newman J, Hoertz PG, Bonino CA, Trainham JA (2012) Review: An economic perspective on liquid solar fuels. J Electrochem Soc 159(10):A1722

    Article  Google Scholar 

  • Pandey PK, Bhave N, Kharat R (2005) Spray deposition process of polycrystalline thin films of CuWO4 and study on its photovoltaic electrochemical properties. Mater Lett 59(24):3149

    Article  Google Scholar 

  • Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456

    Article  Google Scholar 

  • Paracchino A, Mathews N, Hisatomi T, Stefik M, Tilley SD, Grätzel M (2012) Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. Energy Environ Sci 5(9):8673

    Article  Google Scholar 

  • Parfenov VV, Nazipov RA (2002) Effect of synthesis temperature on the transport properties of copper ferrites. Inorg Mater 38(1):78

    Article  Google Scholar 

  • Park HS, Kweon KE, Ye H, Paek E, Hwang GS, Bard AJ (2011) Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C 115(36):17870

    Article  Google Scholar 

  • Park HS, Lee C-Y, Reisner E (2014) Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation. Phys Chem Chem Phys 16(41):22462

    Article  Google Scholar 

  • Parmar KPS, Kang HJ, Bist A, Dua P, Jang JS, Lee JS (2012) Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes. ChemSusChem 5(10):1926

    Article  Google Scholar 

  • Payne D, Robinson M, Egdell R, Walsh A, McNulty J, Smith K, Piper L (2011) The nature of electron lone pairs in BiVO4. Appl Phys Lett 98(21):212110

    Article  Google Scholar 

  • Peter LM, Upul Wijayantha KG (2014) Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem 15(10):1983

    Article  Google Scholar 

  • Pihosh Y, Turkevych I, Mawatari K, Uemura J, Kazoe Y, Kosar S, Makita K, Sugaya T, Matsui T, Fujita D (2015) Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep 5:11141

    Article  Google Scholar 

  • Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci 4:5028

    Article  Google Scholar 

  • Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6(7):1983

    Article  Google Scholar 

  • Prévot MS, Guijarro N, Sivula K (2015) Enhancing the performance of a robust sol–gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. ChemSusChem 8(8):1359

    Article  Google Scholar 

  • Pyper KJ, Yourey JE, Bartlett BM (2013) Reactivity of CuWO4 in photoelectrochemical water oxidation is dictated by a midgap electronic state. J Phys Chem C 117(47):24726

    Article  Google Scholar 

  • Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X (2014) Simultaneously efficient light absorption and charge separation in WO3/BiVO4 Core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14(2):1099

    Article  Google Scholar 

  • Read CG, Park Y, Choi K-S (2012) Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J Phys Chem Lett 3(14):1872

    Article  Google Scholar 

  • Rettie AJE, Lee HC, Marshall LG, Lin JF, Capan C, Lindemuth J, McCloy JS, Zhou J, Bard AJ, Mullins CB (2013) Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. J Am Chem Soc 135(30):11389

    Article  Google Scholar 

  • Roth RS, Waring JL (1963) Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO4 compounds. Am Mineral 48(11–2):1348

    Google Scholar 

  • Ruiz-Fuertes J, Errandonea D, Segura A, Manjón F, Zhu Z, Tu C (2008) Growth, characterization, and high-pressure optical studies of CuWO4. High Pressure Res 28(4):565

    Article  Google Scholar 

  • Saito R, Miseki Y, Sayama K (2012) Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem Commun 48(32):3833

    Article  Google Scholar 

  • Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H (2006) Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J Phys Chem B 110(23):11352

    Article  Google Scholar 

  • Sayama K, Wang N, Miseki Y, Kusama H, Onozawa-Komatsuzaki N, Sugihara H (2010) Effect of carbonate ions on the photooxidation of water over porous BiVO4 film photoelectrode under visible light. Chem Lett 39(1):17

    Article  Google Scholar 

  • Seabold JA, Choi KS (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134(4):2186

    Article  Google Scholar 

  • Seger B, Castelli IE, Vesborg PCK, Jacobsen KW, Hansen O, Chorkendorff I (2014) 2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs. Energy Environ Sci 7(8):2397

    Article  Google Scholar 

  • Seitz LC, Chen Z, Forman AJ, Pinaud BA, Benck JD, Jaramillo TF (2014) Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 7(5):1372

    Article  Google Scholar 

  • Senegas J, Galy J (1974) L’oxyde double Fe2WO6 I Structure cristalline et filiation structurale. J Solid State Chem 10(1):5

    Article  Google Scholar 

  • Shi X, Choi IY, Zhang K, Kwon J, Kim DY, Lee JK, Oh SH, Kim JK, Park JH (2014) Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat Commun 5:4775

    Google Scholar 

  • Shi X, Zhang K, Shin K, Ma M, Kwon J, Choi IT, Kim JK, Kim HK, Wang DH, Park JH (2015) Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy 13:182

    Article  Google Scholar 

  • Sieber K, Leiva H, Kourtakis K, Kershaw R, Dwight K, Wold A (1983) Preparation and properties of substituted iron tungstates. J Solid State Chem 47(3):361

    Article  Google Scholar 

  • Singh AK, Mathew K, Zhuang HL, Hennig RG (2015) Computational screening of 2D materials for photocatalysis. J Phys Chem Lett 6(6):1087

    Article  Google Scholar 

  • Sivula K (2013) Solar-to-chemical energy conversion with photoelectrochemical tandem cells. Chimia 67(3):155

    Article  Google Scholar 

  • Sleight AW, Chen HY, Ferretti A, Cox DE (1979) Crystal-growth and structure of BiVO4. Mater Res Bull 14(12):1571

    Article  Google Scholar 

  • Sliozberg K, Schäfer D, Erichsen T, Meyer R, Khare C, Ludwig A, Schuhmann W (2015) High-throughput screening of thin-film semiconductor material libraries I: System development and case study for T-W-O. ChemSusChem 8(7):1270

    Article  Google Scholar 

  • Solarska R, Krolikowska A, Augustynski J (2010) Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angew Chem Int Ed 49(43):7980

    Article  Google Scholar 

  • Stoughton S, Showak M, Mao Q, Koirala P, Hillsberry D, Sallis S, Kourkoutis L, Nguyen K, Piper L, Tenne D (2013) Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy. APL Mater 1(4):042112

    Article  Google Scholar 

  • Thomas G, Ropital F (1984) Influence des gaz sur la synthese du tungstate de fer Fe2WO6 II. Etude des mecanismes solide-solide. Mater Chem Phys 11(6):563

    Article  Google Scholar 

  • Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed 49(36):6405

    Article  Google Scholar 

  • Tilley SD, Schreier M, Azevedo J, Stefik M, Graetzel M (2014) Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water‐splitting photocathodes. Adv Funct Mater 24(3):303

    Article  Google Scholar 

  • Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem Mater 13(12):4624

    Article  Google Scholar 

  • Touboul M, Melghit K, Bénard P, Louër D (1995) Crystal structure of a metastable form of indium orthovanadate, InVO4-I. J Solid State Chem 118(1):93

    Article  Google Scholar 

  • Trainham JA, Newman J, Bonino CA, Hoertz PG, Akunuri N (2012) Whither solar fuels? Curr Opin Chem Eng 1(3):204

    Article  Google Scholar 

  • van de Krol R, Grätzel M (eds) (2012) Photoelectrochemical hydrogen production. Springer, New York

    Google Scholar 

  • van de Krol R, Ségalini J, Enache CS (2011) Influence of point defects on the performance of InVO4 photoanodes. J photon Energy 1(1):016001

    Article  Google Scholar 

  • Wadnerkar N, English NJ (2013) Density functional theory investigations of bismuth vanadate: effect of hybrid functionals. Comput Mater Sci 74:33

    Article  Google Scholar 

  • Walczak J, Rychiowska-Himmel I, Tabero P (1992) Iron (III) tungstate and its modifications. J Mater Sci 27(13):3680

    Article  Google Scholar 

  • Walsh A, Wei S-H, Yan Y, Al-Jassim MM, Turner JA, Woodhouse M, Parkinson BA (2007) Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: density-functional theory calculations. Phys Rev B 76(16):165119

    Article  Google Scholar 

  • Walsh A, Yan Y, Huda MN, Al-Jassim MM, Wei SH (2009) Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem Mater 21(3):547

    Article  Google Scholar 

  • Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446

    Article  Google Scholar 

  • Woodhouse M, Parkinson BA (2008) Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity. Chem Mater 20(7):2495

    Article  Google Scholar 

  • Woodhouse M, Parkinson BA (2009) Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem Soc Rev 38(1):197

    Article  Google Scholar 

  • Woodhouse M, Herman GS, Parkinson BA (2005) Combinatorial approach to identification of catalysts for the photoelectrolysis of water. Chem Mater 17(17):4318

    Article  Google Scholar 

  • Ye H, Park HS, Bard AJ (2011) Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J Phys Chem C 115(25):12464

    Article  Google Scholar 

  • Yin W-J, Tang H, Wei S-H, Al-Jassim MM, Turner J, Yan Y (2010) Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO2. Phys Rev B 82(4):045106

    Article  Google Scholar 

  • Yin WJ, Wei SH, Al-Jassim MM, Turner J, Yan Y (2011) Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory. Phys Rev B 83(15):155102

    Article  Google Scholar 

  • Yokoyama D, Minegishi T, Maeda K, Katayama M, Kubota J, Yamada A, Konagai M, Domen K (2010) Photoelectrochemical water splitting using a Cu(In, Ga)Se2 thin film. Electrochem Commun 12(6):851

    Article  Google Scholar 

  • Yourey JE, Bartlett BM (2011) Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. J Mater Chem 21(21):7651

    Article  Google Scholar 

  • Yourey JE, Pyper KJ, Kurtz JB, Bartlett BM (2013) Chemical stability of CuWO4 for photoelectrochemical water oxidation. J Phys Chem C 117(17):8708

    Article  Google Scholar 

  • Zhao ZY, Luo WJ, Li ZS, Zou ZG (2010) Density functional theory study of doping effects in monoclinic clinobisvanite BiVO4. Phys Lett A 374(48):4919

    Article  Google Scholar 

  • Zhao ZY, Li ZS, Zou ZG (2011) Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys Chem Chem Phys 13(10):4746

    Article  Google Scholar 

  • Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133(45):18370

    Article  Google Scholar 

  • Zhong M, Hisatomi T, Kuang Y, Zhao J, Liu M, Iwase A, Jia Q, Nishiyama H, Minegishi T, Nakabayashi M (2015) Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J Am Chem Soc 137(15):5053

    Article  Google Scholar 

  • Zhou L, Wang W, Liu S, Zhang L, Xu H, Zhu W (2006) A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J Mol Catal A Chem 252(1):120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel van de Krol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdi, F.F., Berglund, S.P., van de Krol, R. (2016). Multinary Metal Oxide Photoelectrodes. In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics