Skip to main content

Combinatorial Synthesis and Screening of Oxide Materials for Photoelectrochemical Energy Conversion

  • Chapter
  • First Online:
Photoelectrochemical Solar Fuel Production

Abstract

The aim of this chapter is to review the literature on combinatorial approaches for photoelectrochemical (PEC) water splitting. The chapter starts by describing the universal role of the combinatorial approach in the development of new materials, from its start in pharmaceutical compounds to photoelectrochemical water splitting. Then the criteria for selecting materials suitable of water photoelectrolysis to produce hydrogen with sunlight with special attention to mixed metal oxides are presented. After a short description of the history of the combinatorial approach for PEC water splitting, the experimental methods employed for high-throughput combinatorial studies are outlined. The reported methods for library design, substrates used, methods of library preparation, sample firing, screening, and data processing are discussed. Next the libraries studied as potential candidates for (a) photocathodes for the hydrogen evolution reaction (HER), (b) photoanodes in oxygen evolution reaction (OER), and (c) electrocatalysts for hydrogen or oxygen evolution are discussed in more detail. The pronounced role of theory to support the combinatorial search for new materials is discussed. Finally the supporting role of distributed combinatorial outreach programs, where students have the opportunity to contribute to the discovery of new materials, is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi FF, Han L, Smets AHM, Zeman M, Dam B, Krol R. van de (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nature Communications 4. doi: 10.1038/ncomms3195. http://www.nature.com/ncomms/2013/130729/ncomms3195/full/ncomms3195.html

  • Akimov AV, Neukirch AJ, Prezhdo OV (2013) Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem Rev 113(6):4496–4565. doi:10.1021/cr3004899

    Article  Google Scholar 

  • Anderson AY, Bouhadana Y, Barad H-N, Kupfer B, Rosh-Hodesh E, Aviv H, Tischler YR, Rühle S, Zaban A (2014) Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu–O compounds in all-oxide device libraries. ACS Comb Sci 16(2):53–65. doi:10.1021/co3001583

    Article  Google Scholar 

  • Anunson PN, Winkler GR, Winkler JR, Parkinson BA, Schuttlefield Christus JD (2013) Involving students in a collaborative project to help discover inexpensive, stable materials for solar photoelectrolysis. J Chem Educ 90(10):1333–1340. doi:10.1021/ed300574x

    Article  Google Scholar 

  • Arai T, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J Comb Chem 9(4):574–581. doi:10.1021/cc0700142

    Article  Google Scholar 

  • Baeck SH, Jaramillo TF, Brändli C, McFarland EW (2002) Combinatorial electrochemical synthesis and characterization of tungsten-based mixed-metal oxides. J Comb Chem 4(6):563–568. doi:10.1021/cc020014w

    Article  Google Scholar 

  • Benck JD, Pinaud BA, Gorlin Y, Jaramillo TF (2014) Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. PLoS One 9(10):e107942. doi:10.1371/journal.pone.0107942

    Article  Google Scholar 

  • Berglund SP, Lee HC, Núñez PD, Bard AJ, Mullins CB (2013) Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Phys Chem Chem Phys 15(13):4554–4565. doi:10.1039/C3CP50540E

    Article  Google Scholar 

  • Castelli IE, Landis DD, Thygesen KS, Dahl S, Chorkendorff I, Jaramillo TF, Jacobsen KW (2012a) New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy Environ Sci 5(10):9034–9043. doi:10.1039/C2EE22341D

    Article  Google Scholar 

  • Castelli IE, Olsen T, Datta S, Landis DD, Dahl S, Thygesen KS, Jacobsen KW (2012b) Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ Sci 5(2):5814–5819. doi:10.1039/C1EE02717D

    Article  Google Scholar 

  • Chen JYC, Miller JT, Gerken JB, Stahl SS (2014) Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion. Energy Environ Sci 7(4):1382–1386. doi:10.1039/C3EE43811B

    Article  Google Scholar 

  • Fluegel A, Earl DA, Varshneya AK, Seward TP (2008) Density and thermal expansion calculation of silicate glass melts from 1000°C to 1400°C. Eur J Glass Sci Technol B 49(5):245–257

    Google Scholar 

  • Forgie R, Bugosh G, Neyerlin KC, Liu Z, Strasser P (2010) Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media. Electrochem Solid-State Lett 13(4):B36. doi:10.1149/1.3290735

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. doi:10.1038/238037a0

    Article  Google Scholar 

  • Gerischer H (1977) On the stability of semiconductor electrodes against photodecomposition. J Electroanal Chem Interfacial Electrochem 82(1–2):133–143. doi:10.1016/S0022-0728(77)80253-2

    Article  Google Scholar 

  • Gerken JB, Chen JYC, Massé RC, Powell AB, Stahl SS (2012) Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electrocatalysts for water oxidation. Angew Chem Int Ed 51(27):6676–6680. doi:10.1002/anie.201201999

    Article  Google Scholar 

  • Gerken JB, Shaner SE, Massé RC, Porubsky NJ, Stahl SS (2014) A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal. Energy Environ Sci 7(7):2376–2382. doi:10.1039/C4EE00436A

    Article  Google Scholar 

  • Green ML, Takeuchi I, Hattrick-Simpers JR (2013) Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J Appl Phys 113(23):231101. doi:10.1063/1.4803530

    Article  Google Scholar 

  • Gregoire JM, Xiang C, Mitrovic S, Liu X, Marcin M, Cornell EW, Fan J, Jin J (2013a) Combined catalysis and optical screening for high throughput discovery of solar fuels catalysts. J Electrochem Soc 160(4):F337–F342. doi:10.1149/2.035304jes

    Article  Google Scholar 

  • Gregoire JM, Xiang C, Liu X, Marcin M, Jin J (2013b) Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements. Rev Sci Instrum 84(2):024102–024106. doi:10.1063/1.4790419

    Article  Google Scholar 

  • Haber JA, Cai Y, Jung S, Xiang C, Mitrovic S, Jin J, Bell AT, Gregoire JM (2014a) Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ Sci 7(2):682–688. doi:10.1039/C3EE43683G

    Article  Google Scholar 

  • Haber JA, Guevarra D, Jung S, Jin J, Gregoire JM (2014b) Discovery of new oxygen evolution reaction electrocatalysts by combinatorial investigation of the Ni–La–Co–Ce oxide composition space. ChemElectroChem 1(10):1613–1617. doi:10.1002/celc.201402149

    Article  Google Scholar 

  • Hahn NT, Holmberg VC, Korgel BA, Mullins CB (2012) Electrochemical synthesis and characterization of P-CuBi2O4 thin film photocathodes. J Phy Chem C 116(10):6459–6466. doi:10.1021/jp210130v

    Article  Google Scholar 

  • Hamann TW (2012) Splitting water with rust: hematite photoelectrochemistry. Dalton Trans 41(26):7830–7834. doi:10.1039/C2DT30340J

    Article  Google Scholar 

  • Hanak JJ (1970) The ‘multiple-sample concept’ in materials research: synthesis, compositional analysis and testing of entire multicomponent systems. J Mater Sci 5(11):964–971. doi:10.1007/BF00558177

    Article  Google Scholar 

  • Hardee KL, Bard AJ (1977) Semiconductor electrodes X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. J Electrochem Soc 124(2):215–224. doi:10.1149/1.2133269

    Article  Google Scholar 

  • He J, Parkinson BA (2011) Combinatorial investigation of the effects of the incorporation of Ti, Si, and Al on the performance of α-Fe2O3 photoanodes. ACS Comb Sci 13(4):399–404. doi:10.1021/co200024p

    Article  Google Scholar 

  • Heller A, Aharon-Shalom E, Bonner WA, Miller B (1982) Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst. J Am Chem Soc 104(25):6942–6948. doi:10.1021/ja00389a010

    Article  Google Scholar 

  • Hernández-Pagán EA, Vargas-Barbosa NM, Wang T, Zhao Y, Smotkin ES, Mallouk TE (2012) Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells. Energy Environ Sci 5(6):7582–7589. doi:10.1039/C2EE03422K

    Article  Google Scholar 

  • Hirano T, Kozuka H (2003) Photoanodic properties of ZnO thin films prepared from zinc acetate solutions containing cobalt acetate and polyvinylpyrrolidone. J Mater Sci 38(20):4203–4210. doi:10.1023/A:1026341908829

    Article  Google Scholar 

  • Hsu C-H, Chen D-H (2012) CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting. Nanoscale Res Lett 7(1):593. doi:10.1186/1556-276X-7-593

    Article  MathSciNet  Google Scholar 

  • Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344(6187):1005–1009. doi:10.1126/science.1251428

    Article  Google Scholar 

  • Inoue T, Fujishima A, Honda K (1979) Competitive redox reactions at the ZnO semiconductor photoelectrode. Bull Chem Soc Jpn 52(11):3217–3220. doi:10.1246/bcsj.52.3217

    Article  Google Scholar 

  • Jaramillo TF, Ivanovskaya A, McFarland EW (2001) High-throughput screening system for catalytic hydrogen-producing materials. J Comb Chem 4(1):17–22. doi:10.1021/cc010054k

    Article  Google Scholar 

  • Jaramillo TF, Baeck S-H, Kleiman-Shwarsctein A, Choi K-S, Stucky GD, McFarland EW (2004a) Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCoxO thin films for solar hydrogen production. J Comb Chem 7(2):264–271. doi:10.1021/cc049864x

    Article  Google Scholar 

  • Jaramillo TF, Baeck S-H, Kleiman-Shwarsctein A, McFarland EW (2004b) Combinatorial electrochemical synthesis and screening of mesoporous ZnO for photocatalysis. Macromol Rapid Commun 25(1):297–301. doi:10.1002/marc.200300187

    Article  Google Scholar 

  • Jiang C, Wang R, Parkinson BA (2013) Combinatorial approach to improve photoelectrodes based on BiVO4. ACS Comb Sci 15(12):639–645. doi:10.1021/co300119q

    Article  Google Scholar 

  • Katz JE (2008) Metal oxide-based photoelectrochemical cells for solar energy conversion. http://resolver.caltech.edu/CaltechETD:etd-10192007-190231

  • Katz JE, Gingrich TR, Santori EA, Lewis NS (2009) Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting. Energy Environ Sci 2(1):103–112. doi:10.1039/B812177J

    Article  Google Scholar 

  • Khare C, Sliozberg K, Meyer R, Savan A, Schuhmann W, Ludwig A (2013) Layered WO3/TiO2 nanostructures with enhanced photocurrent densities. Int J Hydrogen Energy 38(36):15954–15964. doi:10.1016/j.ijhydene.2013.09.142

    Article  Google Scholar 

  • Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427. doi:10.1126/science.280.5362.425

    Article  Google Scholar 

  • Kim DH, Bi L, Aimon NM, Jiang P, Dionne GF, Ross CA (2012) Combinatorial pulsed laser deposition of Fe, Cr, Mn, and Ni-substituted SrTiO3 films on Si substrates. ACS Comb Sci 14(3):179–190. doi:10.1021/co2001185

    Article  Google Scholar 

  • Kollender JP, Mardare AI, Hassel AW (2013a) Photoelectrochemical scanning droplet cell microscopy (PE-SDCM). ChemPhysChem 14(3):560–567. doi:10.1002/cphc.201200656

    Article  Google Scholar 

  • Kollender JP, Mardare AI, Hassel AW (2013b) Localized photoelectrochemistry on a tungsten oxide–iron oxide thin film material library. ACS Comb Sci 15(12):601–608. doi:10.1021/co400051g

    Article  Google Scholar 

  • Kollender JP, Gallistl B, Mardare AI, Hassel AW (2014) Photoelectrochemical water splitting in a tungsten oxide - nickel oxide thin film material library. Electrochim Acta 140:275–281. doi:10.1016/j.electacta.2014.04.186

    Article  Google Scholar 

  • Kusama H, Wang N, Miseki Y, Sayama K (2010) Combinatorial search for iron/titanium-based ternary oxides with a visible-light response. J Comb Chem 12(3):356–362. doi:10.1021/cc9001845

    Article  Google Scholar 

  • Lewerenz HJ (2010) Tailoring of interfaces for the photoelectrochemical conversion of solar energy. Photoelectrochemical Materials and Energy Conversion Processes: 61–181. http://onlinelibrary.wiley.com/doi/10.1002/9783527633227.ch2/summary

  • Liu X, Shen Y, Yang R, Zou S, Ji X, Shi L, Zhang Y, Liu D, Xiao L, Zheng X, Li S, Fan J, Stucky GD (2012) Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett 12(11):5733–5739. doi:10.1021/nl302992q

    Article  Google Scholar 

  • Loučka T (1977) The reason for the loss of activity of titanium anodes coated with a layer of RuO2 and TiO2. J Appl Electrochem 7(3):211–214. doi:10.1007/BF00618987

    Article  Google Scholar 

  • McKone JR, Lewis NS, Gray HB (2013) Will solar-driven water-splitting devices see the light of day? Chem Mater 26(1):407–414. doi:10.1021/cm4021518

    Article  Google Scholar 

  • Meyer R, Sliozberg K, Khare C, Schuhmann W, Ludwig A (2015) High-throughput screening of thin-film semiconductor material libraries II: characterization of Fe-W-O libraries. ChemSusChem 8(7):1279–1285. doi:10.1002/cssc.201402918

    Article  Google Scholar 

  • Micka K, Gerischer H (1972) Anodic photooxidation of formic acid and methanol at a zinc oxide electrode and the influence of anions. J Electroanal Chem Interfacial Electrochem 38(2):397–402. doi:10.1016/S0022-0728(72)80350-4

    Article  Google Scholar 

  • Minami T (2008) Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes. Thin Solid Films 516(17):5822–5828. doi:10.1016/j.tsf.2007.10.063

    Article  Google Scholar 

  • Minguzzi A, Alpuche-Aviles MA, López JR, Rondinini S, Bard AJ (2008) Screening of oxygen evolution electrocatalysts by scanning electrochemical microscopy using a shielded tip approach. Anal Chem 80(11):4055–4064. doi:10.1021/ac8001287

    Article  Google Scholar 

  • Młynarek G, Paszkiewicz M, Radniecka A (1984) The effect of ferric ions on the behaviour of a nickelous hydroxide electrode. J Appl Electrochem 14(2):145–149. doi:10.1007/BF00618733

    Article  Google Scholar 

  • Montoya JH, Garcia-Mota M, Nørskov JK, Vojvodic A (2014) Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting. Phys Chem Chem Phys 17(4):2634–2640. doi:10.1039/C4CP05259E

    Article  Google Scholar 

  • Muster TH, Trinchi A, Markley TA, Lau D, Martin P, Bradbury A, Bendavid A, Dligatch S (2011) A review of high throughput and combinatorial electrochemistry. Electrochim Acta 56(27):9679–9699. doi:10.1016/j.electacta.2011.09.003

    Article  Google Scholar 

  • Newhouse PF, Parkinson BA (2015) Combinatorial optimization of spinel Co3−xMxO4 M = (Al, Ga, In) alloyed thin films prepared by ink jet printing: photoelectrochemical, optical, and structural properties. J Mater Chem A 3:5901–5907. doi:10.1039/C4TA05671J

    Article  Google Scholar 

  • Ohashi K, Mccann J, Bockris JO (1977) Stable photoelectrochemical cells for the splitting of water. Nature 266(5603):610–611. doi:10.1038/266610a0

    Article  Google Scholar 

  • Osterloh FE, Parkinson BA (2011) Recent developments in solar water-splitting photocatalysis. MRS Bulletin 36(01):17–22. doi:10.1557/mrs.2010.5

    Article  Google Scholar 

  • Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461. doi:10.1038/nmat3017

    Article  Google Scholar 

  • Paracchino A, Brauer JC, Moser J-E, Thimsen E, Graetzel M (2012) Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J Phy Chem C 116(13):7341–7350. doi:10.1021/jp301176y

    Article  Google Scholar 

  • Parkinson B (2010) Distributed research: a new paradigm for undergraduate research and global problem solving. Energy Environ Sci 3(5):509–511. doi:10.1039/B919523H

    Article  Google Scholar 

  • Pendlebury SR, Wang X, Le Formal F, Cornuz M, Kafizas A, Tilley SD, Grätzel M, Durrant JR (2014) Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J Am Chem Soc 136(28):9854–9857. doi:10.1021/ja504473e

    Article  Google Scholar 

  • Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6(7):1983–2002. doi:10.1039/C3EE40831K

    Article  Google Scholar 

  • Potyrailo R, Rajan K, Stoewe K, Takeuchi I, Chisholm B, Lam H (2011) Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb Sci 13(6):579–633. doi:10.1021/co200007w

    Article  Google Scholar 

  • Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280(5370):1735–1737. doi:10.1126/science.280.5370.1735

    Article  Google Scholar 

  • Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89. doi:10.1016/j.jelechem.2006.11.008

    Article  Google Scholar 

  • Rowley JG, Do TD, Cleary DA, Parkinson BA (2014) Combinatorial discovery through a distributed outreach program: investigation of the photoelectrolysis activity of P-Type Fe, Cr, Al oxides. ACS Appl Mater Interfaces 6(12):9046–9052. doi:10.1021/am406045j

    Article  Google Scholar 

  • Rühle S, Anderson AY, Barad H-N, Kupfer B, Bouhadana Y, Rosh-Hodesh E, Zaban A (2012) All-oxide photovoltaics. J Phy Chem Lett 3(24):3755–3764. doi:10.1021/jz3017039

    Article  Google Scholar 

  • Rühle S, Barad HN, Bouhadana Y, Keller DA, Ginsburg A, Shimanovich K, Majhi K, Lovrincic R, Anderson AY, Zaban A (2014) Combinatorial solar cell libraries for the investigation of different metal back contacts for TiO2–Cu2O hetero-junction solar cells. Phys Chem Chem Phys 16(15):7066–7073. doi:10.1039/C4CP00532E

    Article  Google Scholar 

  • Seley D, Ayers K, Parkinson BA (2013) Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. ACS Comb Sci 15(2):82–89. doi:10.1021/co300086h

    Article  Google Scholar 

  • Seyler M, Stoewe K, Maier WF (2007) New hydrogen-producing photocatalysts—a combinatorial search. Appl Catal Environ 76(1–2):146–157. doi:10.1016/j.apcatb.2007.05.020

    Article  Google Scholar 

  • Shinde A, Jones RJR, Guevarra D, Mitrovic S, Becerra-Stasiewicz N, Haber JA, Jin J, Gregoire JM (2015) High-throughput screening for acid-stable oxygen evolution electrocatalysts in the (Mn–Co–Ta–Sb)O X composition space. Electrocatalysis 6(2):229–236. doi:10.1007/s12678-014-0237-7

    Article  Google Scholar 

  • Skorupska K, Maggard PA, Eichberger R, Schwarzburg K, Shahbazi P, Zoellner B, Parkinson BA (2015) Combinatorial investigations of high temperature CuNb oxide phases for photoelectrochemical water splitting. ACS Combinatorial Science. doi:10.1021/acscombsci.5b00142. http://dx.doi.org/10.1021/acscombsci.5b00142

    Google Scholar 

  • Sliozberg K, Schäfer D, Meyer R, Ludwig A, Schuhmann W (2015a) A combinatorial study of photoelectrochemical properties of Fe-W-O thin films. ChemPlusChem 80(1):136–140. doi:10.1002/cplu.201402277

    Article  Google Scholar 

  • Sliozberg K, Schäfer D, Erichsen T, Meyer R, Khare C, Ludwig A, Schuhmann W (2015b) High-throughput screening of thin-film semiconductor material libraries I: System development and case study for Ti-W-O. ChemSusChem 8(7):1270–1278. doi:10.1002/cssc.201402917

    Article  Google Scholar 

  • Sliozberg K, Stein HS, Khare C, Parkinson BA, Ludwig A, Schuhmann W (2015c) Fe–Cr–Al containing oxide semiconductors as potential solar water-splitting materials. ACS Appl Mater Interfaces 7(8):4883–4889. doi:10.1021/am508946e

    Article  Google Scholar 

  • Stepanovich A, Sliozberg K, Schuhmann W, Ludwig A (2012) Combinatorial development of nanoporous WO3 thin film photoelectrodes for solar water splitting by dealloying of binary alloys. Int J Hydrogen Energy 37(16):11618–11624. doi:10.1016/j.ijhydene.2012.05.039

    Article  Google Scholar 

  • Terrett NK, Gardner M, Gordon DW, Kobylecki RJ, Steele J (1995) Combinatorial synthesis — the design of compound libraries and their application to drug discovery. Tetrahedron 51(30):8135–8173. doi:10.1016/0040-4020(95)00467-M

    Article  Google Scholar 

  • Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29(11):1503–1512. doi:10.1016/0013-4686(84)85004-5

    Article  Google Scholar 

  • Valdés Á, Kroes G-J (2009) First principles study of the photo-oxidation of water on tungsten trioxide (WO3). J Chem Phys 130(11):114701. doi:10.1063/1.3088845

    Article  Google Scholar 

  • Vojvodic A, Nørskov JK (2011) Optimizing perovskites for the water-splitting reaction. Science 334(6061):1355–1356. doi:10.1126/science.1215081

    Article  Google Scholar 

  • Walsh A, Yan Y, Huda MN, Al-Jassim MM, Wei S-H (2009) Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem Mater 21(3):547–551. doi:10.1021/cm802894z

    Article  Google Scholar 

  • Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473. doi:10.1021/cr1002326

    Article  Google Scholar 

  • Weber MF, Dignam MJ (1984) Efficiency of splitting water with semiconducting photoelectrodes. J Electrochem Soc 131(6):1258–1265. doi:10.1149/1.2115797

    Article  Google Scholar 

  • Winkler GR, Winkler JR (2011) A light emitting diode based photoelectrochemical screener for distributed combinatorial materials discovery. Rev Scientific Ins 82(11):114101. doi:10.1063/1.3657155

    Article  Google Scholar 

  • Woodhouse M, Parkinson BA (2008a) Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem Soc Rev 38(1):197–210. doi:10.1039/B719545C

    Article  Google Scholar 

  • Woodhouse M, Parkinson BA (2008b) Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity. Chem Mater 20(7):2495–2502. doi:10.1021/cm703099j

    Article  Google Scholar 

  • Woodhouse M, Herman GS, Parkinson BA (2005) Combinatorial approach to identification of catalysts for the photoelectrolysis of water. Chem Mater 17(17):4318–4324. doi:10.1021/cm050546q

    Article  Google Scholar 

  • Xiang C, Suram SK, Haber JA, Guevarra DW, Soedarmadji E, Jin J, Gregoire JM (2013) High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting. ACS Comb Sci 16(2):47–52. doi:10.1021/co400151h

    Article  Google Scholar 

  • Xiang C, Haber J, Marcin M, Mitrovic S, Jin J, Gregoire JM (2014) Mapping quantum yield for (Fe–Zn–Sn–Ti)Ox photoabsorbers using a high throughput photoelectrochemical screening system. ACS Comb Sci 16(3):120–127. doi:10.1021/co400081w

    Article  Google Scholar 

  • Yan Q, Li G, Newhouse PF, Yu J, Persson KA, Gregoire JM, Neaton JB (2015) Mn2V2O7: an earth abundant light absorber for solar water splitting. Advanced Energy Materials: n/a–n/a. doi:10.1002/aenm.201401840

    Google Scholar 

  • Ye H, Park HS, Bard AJ (2011) Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J Phy Chem C 115(25):12464–12470. doi:10.1021/jp200852c

    Article  Google Scholar 

  • Zhang P, Gao L, Song X, Sun J (2015) Micro- and nanostructures of photoelectrodes for solar-driven water splitting. Adv Mater 27(3):562–568. doi:10.1002/adma.201402477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Skorupska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skorupska, K., Parkinson, B.A. (2016). Combinatorial Synthesis and Screening of Oxide Materials for Photoelectrochemical Energy Conversion. In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics