Skip to main content

Contribution and Regulation of Calcium Channels in Endothelial Cells

  • Chapter
  • First Online:
Vascular Ion Channels in Physiology and Disease

Abstract

The endothelium is a highly metabolically active organ that plays a pivotal role in many physiological processes. Endothelial cells express a diversity of calcium-permeable ion channels that can be activated in response to a variety of stimuli including Ca2+ store depletion, oxidative stress, growth factors, and endotoxins. Emerging evidences have implicated the critical requirement of Ca2+ signaling in numerous vascular functions including vasomotor tone, barrier function, leukocyte homing and adhesion, inflammation, and hemostasis. The goal of this chapter is to present a comprehensive review of the expression and regulatory mechanisms of Ca2+ channels in endothelial cells, and discuss their contribution to vascular endothelial cell physiology and pathophysiology processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Augustin HG, Kozian DH, Johnson RC. Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays. 1994;16:901–6.

    CAS  PubMed  Google Scholar 

  2. Fishman AP. Endothelium: a distributed organ of diverse capabilities. Ann N Y Acad Sci. 1982;401:1–8.

    CAS  PubMed  Google Scholar 

  3. Muller MM, Griesmacher A. Markers of endothelial dysfunction. Clin Chem Lab Med. 2000;38:77–85.

    CAS  PubMed  Google Scholar 

  4. Jaffe EA. Cell biology of endothelial cells. Hum Pathol. 1987;18:234–9.

    CAS  PubMed  Google Scholar 

  5. Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol. 2005;77:487–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Santiago-Delpin EA. The endothelium and early immune activation: new perspective and interactions. Transplant Proc. 2004;36:1709–13.

    CAS  PubMed  Google Scholar 

  7. Biedermann BC. Vascular endothelium: checkpoint for inflammation and immunity. News Physiol Sci. 2001;16:84–8.

    CAS  PubMed  Google Scholar 

  8. Lum H, Malik AB. Regulation of vascular endothelial barrier function. Am J Physiol. 1994;267:L223–41.

    CAS  PubMed  Google Scholar 

  9. Cines DB, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    CAS  PubMed  Google Scholar 

  10. Yao X, Garland CJ. Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res. 2005;97:853–63.

    CAS  PubMed  Google Scholar 

  11. Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB. Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation. 2006;13:693–708.

    CAS  PubMed  Google Scholar 

  12. Ahmmed GU, Malik AB. Functional role of TRPC channels in the regulation of endothelial permeability. Pflugers Arch. 2005;451:131–42.

    CAS  PubMed  Google Scholar 

  13. Putney Jr JW. A model for receptor-regulated calcium entry. Cell Calcium. 1986;7:1–12.

    CAS  PubMed  Google Scholar 

  14. Parekh AB, Putney Jr JW. Store-operated calcium channels. Physiol Rev. 2005;85:757–810.

    CAS  PubMed  Google Scholar 

  15. Amiri H, Schultz G, Schaefer M. FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium. 2003;33:463–70.

    CAS  PubMed  Google Scholar 

  16. Montell C. The TRP superfamily of cation channels. Sci STKE. 2005;2005:re3.

    PubMed  Google Scholar 

  17. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol. 2007;9:636–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Du J, et al. TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel. FASEB J. 2014;28:4677–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma X, et al. Heteromeric TRPV4-C1 channels contribute to store-operated Ca(2+) entry in vascular endothelial cells. Cell Calcium. 2011;50:502–9.

    CAS  PubMed  Google Scholar 

  20. Garcia RL, Schilling WP. Differential expression of mammalian TRP homologues across tissues and cell lines. Biochem Biophys Res Commun. 1997;239:279–83.

    CAS  PubMed  Google Scholar 

  21. Paria BC, et al. Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L1303–13.

    CAS  PubMed  Google Scholar 

  22. Kohler R, et al. Expression of ryanodine receptor type 3 and TRP channels in endothelial cells: comparison of in situ and cultured human endothelial cells. Cardiovasc Res. 2001;51:160–8.

    CAS  PubMed  Google Scholar 

  23. Yip H, et al. Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol. 2004;122:553–61.

    CAS  PubMed  Google Scholar 

  24. Liou J, et al. STIM is a Ca2+ sensor essential for Ca2 + -store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15:1235–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Roos J, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 2005;169:435–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang SL, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437:902–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan JP, et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol. 2009;11:337–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Park CY, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell. 2009;136:876–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawasaki T, Lange I, Feske S. A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun. 2009;385:49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liou J, Fivaz M, Inoue T, Meyer T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A. 2007;104:9301–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeng W, et al. STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell. 2008;32:439–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol. 2010;28:491–533.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stathopulos PB, Ikura M. Structural aspects of calcium-release activated calcium channel function. Channels (Austin). 2013;7:344–53.

    CAS  Google Scholar 

  34. Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev. 1997;77:901–30.

    CAS  PubMed  Google Scholar 

  35. Feske S, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–85.

    CAS  PubMed  Google Scholar 

  36. Vig M, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science. 2006;312:1220–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liao Y, et al. Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A. 2007;104:4682–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ong HL, et al. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem. 2007;282:9105–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Prakriya M, et al. Orai1 is an essential pore subunit of the CRAC channel. Nature. 2006;443:230–3.

    CAS  PubMed  Google Scholar 

  40. Faehling M, et al. Essential role of calcium in vascular endothelial growth factor A-induced signaling: mechanism of the antiangiogenic effect of carboxyamidotriazole. FASEB J. 2002;16:1805–7.

    CAS  PubMed  Google Scholar 

  41. Fasolato C, Nilius B. Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch. 1998;436:69–74.

    CAS  PubMed  Google Scholar 

  42. Sundivakkam PC, et al. The Ca(2+) sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2+) entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol. 2012;81:510–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, et al. Orai1 and CRAC channel dependence of VEGF-activated Ca2+ entry and endothelial tube formation. Circ Res. 2011;108:1190–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Abdullaev IF, et al. Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res. 2008;103:1289–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sayner SL, Balczon R, Frank DW, Cooper DM, Stevens T. Filamin A is a phosphorylation target of membrane but not cytosolic adenylyl cyclase activity. Am J Physiol Lung Cell Mol Physiol. 2011;301:L117–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dietrich A, Gudermann T. Another TRP to endothelial dysfunction: TRPM2 and endothelial permeability. Circ Res. 2008;102:275–7.

    CAS  PubMed  Google Scholar 

  47. Groschner K, Rosker C, Lukas M. Role of TRP channels in oxidative stress. Novartis Found Symp. 2004;258:222–30. discussion 231–225, 263–226.

    CAS  PubMed  Google Scholar 

  48. Hecquet CM, Ahmmed GU, Vogel SM, Malik AB. Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res. 2008;102:347–55.

    CAS  PubMed  Google Scholar 

  49. Hecquet CM, Malik AB. Role of H(2)O(2)-activated TRPM2 calcium channel in oxidant-induced endothelial injury. Thromb Haemost. 2009;101:619–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwan HY, Huang Y, Yao X. TRP channels in endothelial function and dysfunction. Biochim Biophys Acta. 2007;1772:907–14.

    CAS  PubMed  Google Scholar 

  51. Inoue K, Xiong ZG. Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc Res. 2009;83:547–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun H, et al. Role of TRPM7 channels in hyperglycemia-mediated injury of vascular endothelial cells. PLoS One. 2013;8:e79540.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarmiento D, et al. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel. Microvasc Res. 2014;98:187–96.

    PubMed  Google Scholar 

  54. Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82:769–824.

    CAS  PubMed  Google Scholar 

  55. Cheng KT, Chan FL, Huang Y, Chan WY, Yao X. Expression of olfactory-type cyclic nucleotide-gated channel (CNGA2) in vascular tissues. Histochem Cell Biol. 2003;120:475–81.

    CAS  PubMed  Google Scholar 

  56. Yao X, Leung PS, Kwan HY, Wong TP, Fong MW. Rod-type cyclic nucleotide-gated cation channel is expressed in vascular endothelium and vascular smooth muscle cells. Cardiovasc Res. 1999;41:282–90.

    CAS  PubMed  Google Scholar 

  57. Zhang J, Xia SL, Block ER, Patel JM. NO upregulation of a cyclic nucleotide-gated channel contributes to calcium elevation in endothelial cells. Am J Physiol Cell Physiol. 2002;283:C1080–9.

    CAS  PubMed  Google Scholar 

  58. Lum H, Del Vecchio PJ, Schneider AS, Goligorsky MS, Malik AB. Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. J Appl Physiol (1985). 1989;66:1471–6.

    CAS  Google Scholar 

  59. Ellis CA, et al. Thrombin induces proteinase-activated receptor-1 gene expression in endothelial cells via activation of Gi-linked Ras/mitogen-activated protein kinase pathway. J Biol Chem. 1999;274:13718–27.

    CAS  PubMed  Google Scholar 

  60. Vogel SM, et al. Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiol Genomics. 2000;4:137–45.

    CAS  PubMed  Google Scholar 

  61. Singh I, et al. Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem. 2007;282:7833–43.

    CAS  PubMed  Google Scholar 

  62. Tiruppathi C, et al. Impairment of store-operated Ca2+ entry in TRPC4(−/−) mice interferes with increase in lung microvascular permeability. Circ Res. 2002;91:70–6.

    CAS  PubMed  Google Scholar 

  63. Jho D, et al. Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2 influx. Circ Res. 2005;96:1282–90.

    CAS  PubMed  Google Scholar 

  64. Mehta D, et al. RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem. 2003;278:33492–500.

    CAS  PubMed  Google Scholar 

  65. Paria BC, et al. Ca2+ influx induced by protease-activated receptor-1 activates a feed-forward mechanism of TRPC1 expression via nuclear factor-kappaB activation in endothelial cells. J Biol Chem. 2006;281:20715–27.

    CAS  PubMed  Google Scholar 

  66. Moore TM, et al. Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. Am J Physiol. 1998;275:L574–82.

    CAS  PubMed  Google Scholar 

  67. Cioffi DL, et al. Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res. 2005;97:1164–72.

    CAS  PubMed  Google Scholar 

  68. Odell AF, Van Helden DF, Scott JL. The spectrin cytoskeleton influences the surface expression and activation of human transient receptor potential channel 4 channels. J Biol Chem. 2008;283:4395–407.

    CAS  PubMed  Google Scholar 

  69. Hofmann T, et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999;397:259–63.

    CAS  PubMed  Google Scholar 

  70. Kini V, Chavez A, Mehta D. A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem. 2010;285:33082–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shinde AV, et al. STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry. Sci Signal. 2012;6:ra18.

    Google Scholar 

  72. Salido GM, Sage SO, Rosado JA. TRPC channels and store-operated Ca(2+) entry. Biochim Biophys Acta. 2009;1793:223–30.

    CAS  PubMed  Google Scholar 

  73. Zhang W, et al. A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem. 2003;278:16222–9.

    CAS  PubMed  Google Scholar 

  74. Glass CA, Pocock TM, Curry FE, Bates DO. Cytosolic Ca2+ concentration and rate of increase of the cytosolic Ca2+ concentration in the regulation of vascular permeability in Rana in vivo. J Physiol. 2005;564:817–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hong JH, et al. Polarized but differential localization and recruitment of STIM1, Orai1 and TRPC channels in secretory cells. Traffic. 2011;12:232–45.

    CAS  PubMed  Google Scholar 

  76. Petersen OH, Tepikin AV. Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol. 2008;70:273–99.

    CAS  PubMed  Google Scholar 

  77. Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS. Local Ca(2) + entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca(2) + signals required for specific cell functions. PLoS Biol. 2011;9:e1001025.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fleming I, Busse R. NO: the primary EDRF. J Mol Cell Cardiol. 1999;31:5–14.

    CAS  PubMed  Google Scholar 

  79. Feletou M, Vanhoutte PM. The alternative: EDHF. J Mol Cell Cardiol. 1999;31:15–22.

    CAS  PubMed  Google Scholar 

  80. Drexler H, Hornig B. Endothelial dysfunction in human disease. J Mol Cell Cardiol. 1999;31:51–60.

    CAS  PubMed  Google Scholar 

  81. Boulanger CM, Vanhoutte PM. G proteins and endothelium-dependent relaxations. J Vasc Res. 1997;34:175–85.

    CAS  PubMed  Google Scholar 

  82. Kamouchi M, et al. Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol. 1999;518(Pt 2):345–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Freichel M, et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat Cell Biol. 2001;3:121–7.

    CAS  PubMed  Google Scholar 

  84. Randall MD, Kendall DA. Anandamide and endothelium-derived hyperpolarizing factor act via a common vasorelaxant mechanism in rat mesentery. Eur J Pharmacol. 1998;346:51–3.

    CAS  PubMed  Google Scholar 

  85. Watanabe H, et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424:434–8.

    CAS  PubMed  Google Scholar 

  86. Sonkusare SK, et al. Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science. 2012;336:597–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheng KT, et al. CNGA2 channels mediate adenosine-induced Ca2+ influx in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28:913–8.

    CAS  PubMed  Google Scholar 

  88. Shen B, et al. Epinephrine-induced Ca2+ influx in vascular endothelial cells is mediated by CNGA2 channels. J Mol Cell Cardiol. 2008;45:437–45.

    CAS  PubMed  Google Scholar 

  89. Kwan HY, et al. CNGA2 contributes to ATP-induced noncapacitative Ca2+ influx in vascular endothelial cells. J Vasc Res. 2009;47:148–56.

    PubMed  Google Scholar 

  90. Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev. 2001;81:1415–59.

    CAS  PubMed  Google Scholar 

  91. Brock TA, Dvorak HF, Senger DR. Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am J Pathol. 1991;138:213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Faehling M, Koch ED, Raithel J, Trischler G, Waltenberger J. Vascular endothelial growth factor-A activates Ca2+ -activated K+ channels in human endothelial cells in culture. Int J Biochem Cell Biol. 2001;33:337–46.

    CAS  PubMed  Google Scholar 

  93. Cheng HW, James AF, Foster RR, Hancox JC, Bates DO. VEGF activates receptor-operated cation channels in human microvascular endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26:1768–76.

    CAS  PubMed  Google Scholar 

  94. Pocock TM, Foster RR, Bates DO. Evidence of a role for TRPC channels in VEGF-mediated increased vascular permeability in vivo. Am J Physiol Heart Circ Physiol. 2004;286:H1015–26.

    CAS  PubMed  Google Scholar 

  95. Ge R, et al. Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett. 2009;283:43–51.

    CAS  PubMed  Google Scholar 

  96. Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO. VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation. 2008;15:605–14.

    CAS  PubMed  Google Scholar 

  97. Fantozzi I, et al. Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2003;285:L1233–45.

    CAS  PubMed  Google Scholar 

  98. Antigny F, Girardin N, Frieden M. Transient receptor potential canonical channels are required for in vitro endothelial tube formation. J Biol Chem. 2012;287:5917–27.

    CAS  PubMed  Google Scholar 

  99. Chen YF, et al. Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A. 2011;108:15225–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lodola F, et al. Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One. 2012;7:e42541.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med. 2012;2:a006429.

    PubMed  PubMed Central  Google Scholar 

  102. Touyz RM. Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol. 2008;294:H1103–18.

    PubMed  Google Scholar 

  103. Owsianik G, Talavera K, Voets T, Nilius B. Permeation and selectivity of TRP channels. Annu Rev Physiol. 2006;68:685–717.

    CAS  PubMed  Google Scholar 

  104. Wolf FI, Cittadini A. Magnesium in cell proliferation and differentiation. Front Biosci. 1999;4:D607–17.

    CAS  PubMed  Google Scholar 

  105. Sgambato A, Wolf FI, Faraglia B, Cittadini A. Magnesium depletion causes growth inhibition, reduced expression of cyclin D1, and increased expression of P27Kip1 in normal but not in transformed mammary epithelial cells. J Cell Physiol. 1999;180:245–54.

    CAS  PubMed  Google Scholar 

  106. Fiorio Pla A, et al. Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis. Mol Cancer Res. 2008;6:535–45.

    PubMed  Google Scholar 

  107. Fiorio Pla A, et al. TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene. 2012;31:200–12.

    CAS  PubMed  Google Scholar 

  108. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5:987–95.

    CAS  PubMed  Google Scholar 

  109. Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992;355:353–6.

    CAS  PubMed  Google Scholar 

  110. Nilius B, Owsianik G. Transient receptor potential channelopathies. Pflugers Arch. 2010;460:437–50.

    CAS  PubMed  Google Scholar 

  111. Danese S, Dejana E, Fiocchi C. Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol. 2007;178:6017–22.

    CAS  PubMed  Google Scholar 

  112. Tauseef M, et al. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. J Exp Med. 2012;209:1953–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gandhirajan RK, et al. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. J Clin Invest. 2013;123:887–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. DebRoy A, et al. Cooperative signaling via transcription factors NF-kappaB and AP1/c-Fos mediates endothelial cell STIM1 expression and hyperpermeability in response to endotoxin. J Biol Chem. 2014;289:24188–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lombardi L, et al. Chemokine receptor CXCR4: role in gastrointestinal cancer. Crit Rev Oncol Hematol. 2013;88:696–705.

    PubMed  Google Scholar 

  116. Zhou MH, et al. Stromal interaction molecule 1 (STIM1) and Orai1 mediate histamine-evoked calcium entry and nuclear factor of activated T-cells (NFAT) signaling in human umbilical vein endothelial cells. J Biol Chem. 2014;289:29446–56.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank Kit Man Tsang for manuscript editing and Katrian Cheng for support. This work was supported by NIH grant HL077806 to A.B.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asrar B. Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheng, K.T., Rosenhouse-Dantsker, A., Malik, A.B. (2016). Contribution and Regulation of Calcium Channels in Endothelial Cells. In: Levitan, PhD, I., Dopico, MD, PhD, A. (eds) Vascular Ion Channels in Physiology and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-29635-7_2

Download citation

Publish with us

Policies and ethics