• Paul PopEmail author
  • Wajid Hassan Minhass
  • Jan Madsen


This chapter presents an introduction to the microfluidics field and microfluidic biochips. We discuss the main fluid propulsion principles used by modern microfluidic platforms, with a focus on “continuous flow” microfluidic biochips, which is the topic of this book. Continuous flow microfluidic biochips manipulate the fluids as continuous flow, in contrast to digital microfluidic biochips, which manipulate small droplets. Several application areas for biochips are discussed, and the motivation behind the work presented in this book is introduced. At the end of the chapter, we outline the structure of the book and an overview of the topics covered.


Microfluidics Biochips Continuous-flow biochips Application areas Computer-aided design Programming and control Physical design and testing 


  1. 1.
  2. 2.
    Agilent Technologies.
  3. 3.
    Amin, A.M., Thottethodi, M., Vijaykumar, T.N., Wereley, S., Jacobson, S.C.: AquaCore: a programmable architecture for microfluidics. In: Proceedings of the 34th annual international symposium on Computer architecture, pp. 254–265 (2007)Google Scholar
  4. 4.
    Amin, A.M., Thakur, R., Madren, S., Chuang, H.S., Thottethodi, M., Vijaykumar, T., Wereley, S.T., Jacobson, S.C.: Software-programmable continuous-flow multi-purpose lab-on-a-chip. Microfluid. nanofluid. 15(5), 647–659 (2013)CrossRefGoogle Scholar
  5. 5.
    Araci, I.E., Brisk, P.: Recent developments in microfluidic large scale integration. Curr. Opin. Biotech. 25, 60–68 (2014)CrossRefGoogle Scholar
  6. 6.
    Araci, I.E., Quake, S.R.: Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Lab Chip 12, 2830–2806 (2012)CrossRefGoogle Scholar
  7. 7.
    Araci, I., Pop, P., Chakrabarty, K.: Microfluidic very large-scale integration for biochips: Technology, testing and fault-tolerant design. In: 20th IEEE European Test Symposium, pp. 1–8 (2015)Google Scholar
  8. 8.
  9. 9.
    Biochips: A Global Strategic Business Report.
  10. 10.
    Blainey, P.C., Quake, S.R.: Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res. 39(4) (2011)Google Scholar
  11. 11.
    Caliper Life Sciences Inc.
  12. 12.
    Chakrabarty, K., Xu, T.: Digital Microfluidic Biochips: Design Automation and Optimization. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  13. 13.
    Chin, C.D., Laksanasopin, T., Cheung, Y.K., Steinmiller, D., Linder, V., Parsa, H., Wang, J., Moore, H., Rouse, R., Umviligihozo, G., et al.: Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17(8), 1015–1019 (2011)CrossRefGoogle Scholar
  14. 14.
    Einav, S., Gerber, D., Bryson, P.D., Sklan, E.H., Elazar, M., Maerkl, S.J., Glenn, J.S., Quake, S.R.: Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat. Biotech. 26(9), 1019–1027 (2008)CrossRefGoogle Scholar
  15. 15.
    Fair, R.B.: Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007)CrossRefGoogle Scholar
  16. 16.
    Fan, H.C., Blumenfeld, Y.J., Chitkara, U., Hudgins, L., Quake, S.R.: Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. In: Proceedings of the National Academy of Sciences, USA 105(42), 16266–16271 (2008)Google Scholar
  17. 17.
    Fang, C., Wang, Y., Vu, N.T., Lin, W., Hsieh, Y., Rubbi, L., Phelps, M.E., Mueschen, M., Kim, Y., Chatziioannou, A.F., Tseng, H., Graeber, T.G.: Integrated microfluidic and imaging platform for a kinase activity radioassay to analyze minute patient cancer samples. Cancer Res. 70(21), 8299–8308 (2010)CrossRefGoogle Scholar
  18. 18.
    Fidalgo, L.M., Maerkl, S.J.: A software-programmable microfluidic device for automated biology. Lab on a Chip 11(9), 1612–1619 (2011)CrossRefGoogle Scholar
  19. 19.
    Fluidigm Corporation.
  20. 20.
    GE Healthcare Ltd.
  21. 21.
    Hansen, C.L., Sommer, M.O.A., Quake, S.R.: Systematic investigation of protein phase behavior with a microfluidic formulator. In: Proceedings of the National Academy of Sciences, USA 101(40), 14431–14436 (2004)Google Scholar
  22. 22.
    Harrison, D.J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C.S., Manz, A.: Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897 (1993)CrossRefGoogle Scholar
  23. 23.
    Hong, J.W., Studer, V., Hang, G., Anderson, W.F., Quake, S.R.: A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotech. 22(4), 435–439 (2004)CrossRefGoogle Scholar
  24. 24.
    Hong, J.W., Chen, Y., Anderson, W.F., Quake, S.R.: Molecular biology on a microfluidic chip. J. Phys.: Condens. Matter 18(18), 691–701 (2006)Google Scholar
  25. 25.
  26. 26.
    Hu, K., Yu, F., Ho, T.Y., Chakrabarty, K.: Testing of flow-based microfluidic biochips: Fault modeling, test generation, and experimental demonstration. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(10), 1463–1475 (2014)CrossRefGoogle Scholar
  27. 27.
    Illumina, Inc.
  28. 28.
    International Technology Roadmap for Semiconductors 2011 Edition.
  29. 29.
    ISI Web of Science, search for topic microfluidic.
  30. 30.
    Klammer, I., Buchenauer, A., Fassbender, H., Schlierf, R., Dura, G., Mokwa, W., Schnakenberg, U.: Numerical analysis and characterization of bionic valves for microfluidic PDMS-based systems. J. Micromec. Microeng. 17(7), S122–S127 (2007)CrossRefGoogle Scholar
  31. 31.
    KNI Microfluidic Foundry—CalTech.
  32. 32.
    Le, H.P.: Progress and trends in ink-jet printing technology. J. Imaging Sci. Tech. 42, 49–62 (1998)Google Scholar
  33. 33.
    Lee, C.C., Elizarov, A., Shu, C.J., Shin, Y.S., Dooley, A.N.: Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310, 1793–1796 (2005)CrossRefGoogle Scholar
  34. 34.
    Life Technologies Corporation.
  35. 35.
    Lintel, H.T.G.: A piezoelectric micropump based on micromachining of silicon. Sens. Actuators 15(2), 153–167 (1988)CrossRefGoogle Scholar
  36. 36.
    Manz, A., Graber, N., Widmerl, H.M.: Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B: Chem. 1, 244–248 (1990)CrossRefGoogle Scholar
  37. 37.
    Marcus, J.S., Anderson, W.F., Quake, S.R.: Microfluidic single-cell mrna isolation and analysis. Anal. Chem. 78(9), 3084–3089 (2006)CrossRefGoogle Scholar
  38. 38.
    Mark, D., Haeberle, S., Roth, G., Stetten, F., Zengerle, R.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153–1182 (2010)CrossRefGoogle Scholar
  39. 39.
    Melin, J., Quake, S.: Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)CrossRefGoogle Scholar
  40. 40.
    Perkel, J.M.: Life science technologies: microfluidics–bringing new things to life science. Science 322(5903), 975–977 (2008)CrossRefGoogle Scholar
  41. 41.
    Pollack, M.G., Shenderov, A.D., Fair, R.B.: Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip Journal 2, 96–101 (2002)CrossRefGoogle Scholar
  42. 42.
    Shoji, S., Esashi, M., Matsuo, T.: Prototype miniature blood gas analyser fabricated on a silicon wafer. Sens. Actuators 14(2), 101–107 (1988)CrossRefGoogle Scholar
  43. 43.
    Siegrist, J., Amasia, M., Singh, N., Banerjee, D., Madou, M.: Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics. Lab Chip 10, 876–886 (2010)CrossRefGoogle Scholar
  44. 44.
    Skafte-Pedersen, P., Hemmingsen, M., Sabourin, D., Blaga, F.S., Bruus, H., Dufva, M.: A self-contained, programmable microfluidic cell culture system with real-time microscopy access. Biomed. Microdevices 14(2), 385–399 (2012)CrossRefGoogle Scholar
  45. 45.
    Stanford Microfluidic Foundry.
  46. 46.
    Su, F., Ozev, S., Chakrabarty, K.: Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays. In: Proceedings of the International Test Conference, pp. 883–892 (2004)Google Scholar
  47. 47.
    Terry, S.C., Jerman, J.H., Angell, J.B.: A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 26(12), 1880–1886 (1979)CrossRefGoogle Scholar
  48. 48.
    Thies, W.B.: Programmable microfluidics. presented at Stanford University (2007)Google Scholar
  49. 49.
    Thies, W., Urbanski, J.P., Thorsen, T., Amarasinghe, S.: Abstraction layers for scalable microfluidic biocomputing. Nat. Comput. 7(2), 255–275 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Thorsen, T., Maerkl, S.J., Quake, S.R.: Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)CrossRefGoogle Scholar
  51. 51.
    Unger, M.A., Chou, H., Thorsen, T., Scherer, A., Quake, S.R.: Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)CrossRefGoogle Scholar
  52. 52.
    United States Patent and Trademark office, search issued patents for microfluidic in title or abstract.
  53. 53.
    Urbanski, J.P., Thies, W., Rhodes, C., Amarasinghe, S., Thorsen, T.: Digital microfluidics using soft lithography. Lab on a Chip 6(1), 96–104 (2006)CrossRefGoogle Scholar
  54. 54.
    Verinata Health.
  55. 55.
    Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Technical University of DenmarkKongens LyngbyDenmark

Personalised recommendations