Advertisement

Palaeoreconstruction of Pangea During the Early Cretaceous, and Location of Volcanism in Córdoba and Misiones Provinces with Respect to Seismic Structures in the Lower Mantle

  • Silvia Leonor LagorioEmail author
  • Haroldo Vizán
  • Silvana Evangelina Geuna
Chapter
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)

Abstract

To analyse the possible geodynamical processes that caused the volcanism in Misiones Province (north-eastern Argentina) involved in the context of Paraná Magmatic Province and the Early Cretaceous basalts of Córdoba Province (central Argentina), an absolute reconstruction of Pangea was performed on the basis of 7 high-quality palaeomagnetic poles of South America and Africa that belong to the localities with aged volcanic rocks about 130 Ma. The rest of the continents that formed Pangea were reconstructed on the basis of reliable parameters that have been published by other authors. It was considered that Africa had not significant longitudinal movements from at least the Early Cretaceous since there was not any margin of subduction during the history of this continent which slabs could have determined a large convective cell causing a longitudinal drift of this plate. The palaeogeographic reconstruction was analysed in the framework of a well-known model of seismic anomalies in the lowermost mantle. Cratons and other continental domains older than the Late Palaeozoic were also considered, taking into account that the Early Cretaceous volcanism in South America and Africa could have been also conditioned by the old lithospheric architecture of these continental plates.

Keywords

Early cretaceous Absolute palaeoreconstruction Pangea Volcanism Lowermost mantle Córdoba Misiones Argentina 

References

  1. Bossi J, Gaucher C (2004) The Cuchilla Dionisio, Uruguay: an allochtonous block accreted in the Cambrian to SW-Gondwana. Gondwana Res 7(3):661–674CrossRefGoogle Scholar
  2. Burke K, Torsvik TH (2004) Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet Sci Lett 227:531–538CrossRefGoogle Scholar
  3. Ernesto M, Pacca IG, Hiodo F, Nardy JR (1990) Paleomagnetism of the Mesozoic Serra Geral Formation, southern Brazil. Phys Earth Planet Inter 64:153–175CrossRefGoogle Scholar
  4. Ernesto M, Comin-Chiaramonti P, Gomes CB, Castillo AMC, Velazquez JC (1996) Palaeomagnetic data from the Central Alkaline Province, eastern Paraguay. In: Comin-Chiaramonti P, Gomes CB (eds) Alkaline magmatism in Central-Eastern Paraguay. University of Sao Paulo, Sao Paulo, pp 85–102Google Scholar
  5. Favela J, Anderson DL (2000) Extensional tectonics and global volcanism. In: Boschi E, Ekstrom G, Morelli A (eds) Problems in geophysics for the New Millennium. Bologna Editrice Compositori, pp 463–498Google Scholar
  6. Fisher RA (1953) Dispersion on a sphere. Proc Royal Soc A217:295–305CrossRefGoogle Scholar
  7. Gaucher C, Frei R, Chemale F Jr, Frei D, Bossi J, Martínez G, Chiglino L, Cernuschi F (2011) Mesoproterozoic evolution of the Río de la Plata craton in Uruguay: at the heart of Rodinia? Int J Earth Sci 100:273–288CrossRefGoogle Scholar
  8. Geuna SE, Vizán H (1998) New Early Cretaceous palaeomagnetic pole from Córdoba Province (Argentina): Revision of previous studies and implications for the South American database. Geophys J Int 135:1085–1100CrossRefGoogle Scholar
  9. Gibson SA, Thompson RN, Dickin AP, Leonardos OH (1996) Erratum to “High-Ti and low-Ti mafic potassic magmas: Key to plume-litosphere interactions and continental flood-basalt genesis”. Earth Planet Sci Lett 141:325–341CrossRefGoogle Scholar
  10. Gidskehaug A, Creer KM, Mitchell J (1975) Palaeomagnetism and K-Ar ages of the South-West African basalts and their bearing on the time of initial rifting of the South Atlantic Ocean. Geophys J Roy Astron Soc 42:1–20CrossRefGoogle Scholar
  11. Iacumin M, De Min A, Piccirillo EM, Bellieni G (2003) Source mantle heterogeneity and its role in the genesis of Late Archean-Proterozoic (2.7-1.0 Ga) and Mesozoic (200 and 130 Ma) tholeiitic magmatism in the South American Platform. Earth Sci Rev 62:365–397CrossRefGoogle Scholar
  12. Lagorio SL (2008) Early Cretaceous alkaline volcanism of the Sierra Chica de Córdoba (Argentina): Mineralogy, geochemistry and petrogenesis. J S Am Earth Sci 26:152–171CrossRefGoogle Scholar
  13. Lagorio SL, Vizán H (2011) El volcanismo de Serra Geral en la Provincia de Misiones: aspectos geoquímicos e interpretación de su génesis en el contexto de la Gran Provincia Ígnea Paraná-Etendeka-Angola. Su relación con el volcanismo alcalino de Córdoba (Argentina). Geoacta 36:27–53Google Scholar
  14. Marzoli A, Melluso L, Morra V, Renne PR, Sgrosso I, D’Antonio M, Duarte Morais L, Morais EAA, Ricci G (1999) Geochronology and petrology of Cretaceous basaltic magmatism in the Kwanza basin (western Angola), and relationships with the Paraná-Etendeka continental flood basalt province. J Geodyn 28:341–356CrossRefGoogle Scholar
  15. Masters G, Johnson S, Laske G, Bolton H (1996) A shear-velocity model of the mantle. Philo Trans R Soc Lond A 354:1385–1411CrossRefGoogle Scholar
  16. Mena M, Orgeira MJ, Lagorio SL (2006) Paleomagnetism, rock-magnetim and geochemical aspects of early Cretaceous basalts of the Paraná Magmatic Province, Misiones, Argentina. Earth Planet Space 58:1283–1293CrossRefGoogle Scholar
  17. Piccirillo EM, Melfi AJ (1988) The mesozoic flood volcanism from the Paraná Basin (Brazil): petrogenetic and geophysical aspects. Universidad de São Paulo, 600 p, San PabloGoogle Scholar
  18. Rapela CW, Pankhurst RJ, Casquet C, Fanning CM, Baldo EG, González-Casado JM, Galindo C, Dahlquist J (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth Sci Rev 83:49–82CrossRefGoogle Scholar
  19. Tauxe L, Kent DV (2004) A simplified model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar? In: Channell JET, Kent DV, Lowrie W, Meert JG (eds) Timescales of the paleomagnetic field. Geophysical Monograph Series, vol 145. American Geophysical Union, Boulder, Colorado, pp 101–115Google Scholar
  20. Torsvik TH, Smethurst MA (1999) Plate tectonic modelling: virtual reality with GMAP. Comput Geosci 25:395–402CrossRefGoogle Scholar
  21. Torsvik TH, Müller RD, Van der Voo R, Steinberger B, Gaina C (2008) Global plate motion frames: towards a unified model. Rev Geophys 46. doi: 10.1029/20007RG000227
  22. Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B, Doubrovine PV, van Hinsbergen DJ, Domeier M, Gaina M, Tohver E, Meert J, McCausland PJL, Cocks RM (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci Rev 114:325–368CrossRefGoogle Scholar
  23. Van der Voo R (1993) Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge University Press, Cambridge, 411 pGoogle Scholar
  24. Vizán H, Lagorio SL (2011) Modelo geodinámico de los prcesos que generaron el volcanismo cretácico de Córdoba (Argentina) y la gran Provncia Ígnea Paraná, incluyendo el origen y evolución de la “pluma” Tristán. Geoacta 36:55–75Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Silvia Leonor Lagorio
    • 1
    Email author
  • Haroldo Vizán
    • 2
  • Silvana Evangelina Geuna
    • 2
  1. 1.Instituto de Geología y Recursos MineralesServicio Geológico Minero Argentino (IGRM-SEGEMAR), Parque Tecnológico MigueleteSan Martín, Buenos AiresArgentina
  2. 2.IGEBA (CONICET-UBA)Departamento de Ciencias Geológicas. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations