Security and Privacy Preservation of Evidence in Cloud Accountability Audits

  • Thomas RübsamenEmail author
  • Tobias Pulls
  • Christoph Reich
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 581)


Cloud accountability audits are promising to strengthen trust in cloud computing by providing reassurance about the processing data in the cloud according to data handling and privacy policies. To effectively automate cloud accountability audits, various distributed evidence sources need to be considered during evaluation. The types of information range from authentication and data access logging to location information, information on security controls and incident detection. Securing that information quickly becomes a challenge in the system design, when the evidence that is needed for the audit is deemed sensitive or confidential information. This means that securing the evidence at-rest as well as in-transit is of utmost importance. In this paper, we present a system that is based on distributed software agents which enables secure evidence collection with the purpose of automated evaluation during cloud accountability audits. We thereby present the integration of Insynd as a suitable cryptographic mechanism for securing evidence. We present our reasoning for choosing Insynd by showing a comparison of Insynd properties with requirements imposed by accountability evidence collection as well as an analysis how security threats are being mitigated by Insynd. We put special emphasis on security and privacy protection in our system analysis.


Cloud Computing Virtual Machine Cloud Service Audit Task Collection Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partly funded from the European Commission’s Seventh Framework Programme (FP7/2007–2013), grant agreement 317550, Cloud Accountability Project - - (A4CLOUD).


  1. 1.
    A4Cloud FP7 Project (2015).
  2. 2.
    An, J.H.: Authenticated encryption in the public-key setting: security notions and analyses. IACR Cryptology ePrint Archive 2001, 79 (2001).
  3. 3.
    Ardagna, C.A., Bussard, L., Vimercati, S.D.C.D., Neven, G., Paraboschi, S., Pedrini, E., Preiss, S., Raggett, D., Samarati, P., Trabelsi, S., Verdicchio, M.: Primelife policy language (2009).
  4. 4.
    Azraoui, M., Elkhiyaoui, K., Önen, M., Bernsmed, K., De Oliveira, A.S., Sendor, J.: A-PPL: an accountability policy language. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Lupu, E., Posegga, J., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/SETOP/QASA 2014. LNCS, vol. 8872, pp. 319–326. Springer, Heidelberg (2015). Google Scholar
  5. 5.
    Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 159–176. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  7. 7.
    Bowers, K.D., Hart, C., Juels, A., Triandopoulos, N.: PillarBox: combating next-generation malware with fast forward-secure logging. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 46–67. Springer, Heidelberg (2014). Google Scholar
  8. 8.
    Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion router. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Security Symposium, 9–13 August 2004, San Diego, CA, USA, pp. 303–320. USENIX (2004),
  9. 9.
    Doelitzscher, F., Reich, C., Knahl, M., Passfall, A., Clarke, N.: An agent based business aware incident detection system for cloud environments. J. Cloud Comput. Adv. Syst. Appl. 1(1), 9 (2012)CrossRefGoogle Scholar
  10. 10.
    Doelitzscher, F., Ruebsamen, T., Karbe, T., Reich, C., Clarke, N.: Sun behind clouds - on automatic cloud security audits and a cloud audit policy language. Int. J. Adv. Netw. Serv. 6(1,2), 1–16 (2013)Google Scholar
  11. 11.
    Gupta, A.: Privacy preserving efficient digital forensic investigation framework. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp. 387–392, August 2013Google Scholar
  12. 12.
    Haeberlen, A.: A case for the accountable cloud. In: Proceedings of the 3rd ACM SIGOPS International Workshop on Large-Scale Distributed Systems and Middleware (LADIS 2009), October 2009Google Scholar
  13. 13.
    JADE: Java Agent Developement framework (2015).
  14. 14.
    Jansen, W., Grance, T.: Sp 800–144. guidelines on security and privacy in public cloud computing. Technical report, National Institute of Standards and Technology, Gaithersburg, MD, United States (2011)Google Scholar
  15. 15.
    Jerman Blaič, A., Klobučar, T., Jerman, B.D.: Long-term trusted preservation service using service interaction protocol and evidence records. Comput. Stand. Interfaces 29(3), 398–412 (2007). CrossRefGoogle Scholar
  16. 16.
    Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D.: Nist cloud computing reference architecture (2011).
  17. 17.
    Lopez, J., Ruebsamen, T., Westhoff, D.: Privacy-friendly cloud audits with somewhat homomorphic and searchable encryption. In: 2014 14th International Conference on Innovations for Community Services (I4CS), pp. 95–103, June 2014Google Scholar
  18. 18.
    Microsoft Developer Network: The Stride Threat Model (2015).
  19. 19.
    Mohay, G.M., Anderson, A.M., Collie, B., de Vel, O., McKemmish, R.D.: Computer and Intrusion Forensics. Artech House, Boston (2003). For more information about this book please refer to the publisher’s website (see link) or contact the authorsGoogle Scholar
  20. 20.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012), 28 (2008)Google Scholar
  21. 21.
    OpenStack: Openstack (2015).
  22. 22.
    Pearson, S.: Toward accountability in the cloud. IEEE Internet Comput. 15(4), 64–69 (2011)CrossRefGoogle Scholar
  23. 23.
    Pulls, T., Peeters, R.: Balloon: a forward-secure append-only persistent authenticated data structure. In: Pernul, G., Y A Ryan, P., Weippl, E., Torres, C.F., Jonker, H., Mauw, S., Diao, W., Liu, X., et al. (eds.) ESORICS. LNCS, vol. 9327, pp. 622–641. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24177-7_31 CrossRefGoogle Scholar
  24. 24.
    Pulls, T., Peeters, R.: Insynd: secure one-way messaging through Balloons. Cryptology ePrint Archive, Report 2015/150 (2015)Google Scholar
  25. 25.
    Pulls, T., Peeters, R., Wouters, K.: Distributed privacy-preserving transparency logging. In: Sadeghi, A.R., Foresti, S. (eds.) WPES, pp. 83–94. ACM (2013)Google Scholar
  26. 26.
    R. Brandner, U.P., Gondrom, T.: Evidence record syntax (ERS) (2014).
  27. 27.
    Redfield, C. M., Date, H.: Gringotts: securing data for digital evidence. In: 2014 IEEE Security and Privacy Workshops (SPW), pp. 10–17, May 2014Google Scholar
  28. 28.
    Ruebsamen, T., Reich, C.: Supporting cloud accountability by collecting evidence using audit agents. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom), vol. 1, pp. 185–190, December 2013Google Scholar
  29. 29.
    Turner, P.: Unification of digital evidence from disparate sources (digital evidence bags). Digit. Investig. 2(3), 223–228 (2005). CrossRefGoogle Scholar
  30. 30.
    Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008). CrossRefGoogle Scholar
  31. 31.
    Zhang, R., Li, Z., Yang, Y., Li, Z.: An efficient massive evidence storage and retrieval scheme in encrypted database. In: 2013 International Conference on Information and Network Security (ICINS 2013), pp. 1–6, November 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Rübsamen
    • 1
    Email author
  • Tobias Pulls
    • 2
  • Christoph Reich
    • 1
  1. 1.Cloud Research LabFurtwangen UniversityFurtwangenGermany
  2. 2.Department of Mathematics and Computer ScienceKarlstad UniversityKarlstadSweden

Personalised recommendations