Skip to main content

Potential of Bacillus thuringiensis in the Management of Pernicious Lepidopteran Pests

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

Microbial products have a long history of safe use and most of the microbial agents are compatible with other methods of pest control. A number of microbial biopesticides have been registered for field application on various vegetables, fruits, and other crops of agricultural, horticultural, and forest importance. During sporulation phase, Bacillus thuringiensis accumulates certain insecticidal crystal proteins which are pathogenic to a number of insect orders. Thousands of toxicogenic strains of B. thuringiensis exist and each strain produces its own unique well-known insecticidal crystal protein. B. thuringiensis is biodegradable and safe to nontarget organisms as the conditions required for complex steps in the mode of action do not exist in mammals or most of invertebrates. Development of agricultural crop varieties that contain B. thuringiensis proteins provides a safe alternative to the use of chemical insecticides. Tobacco and tomato were the first transgenic plants encoding for B. thuringiensis insecticidal crystal protein. The development of resistance to B. thuringiensis toxins is, however, particularly unfortunate. Thousands of B. thuringiensis isolates are available around the world, and fortunately almost all the major insect pests are susceptible to these strains. Moreover synthetic insecticides in combination with biopesticides are economic, effective, and eco-friendly. The aim of this chapter is to focus on the potentiality of B. thuringiensis in the management of pernicious lepidopteran pests and their mode of their interactions to develop the cost-effective medium for the formulation of biopesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Sattar A, Watson TF (1982) Survival of tobacco bud worm (Heliothis virescens) (Lepidoptera: Noctuidae) larvae after short term feeding periods on cotton treated with Bacillus thuringiensis. J Econ Entomol 75:630–632

    Article  Google Scholar 

  • Adachi T, Grey G (1996) Control of diamondback moth (Plutella xylostella L.) on cabbage with Bt formulations and fluctuations in resistance to Bt. The Use of Biological Control Agents under Integrated Pest Management, Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei, Taiwan, pp 164–171

    Google Scholar 

  • Adams LA, Lin CL, Mc Intosh SC, Tarnes RL (1996) Diversity and biological activity of Bacillus thuringiensis. In: Copping IG (ed) Crop protection agents from nature: natural products and analogues. The Royal Society of Chemistry, Cambridge, UK, pp 360–388

    Google Scholar 

  • Ajanta C, Kaushak NC, Gupta GP, Chandra A (1999) Studies of Bacillus thuringiensis on growth and development of H. armigera Hubner. Ann Plant Prot Sci 7:154–189

    Google Scholar 

  • Angus TA (1954) A bacterial toxin paralyzing silkworm larvae. Nature 173:545–546

    Article  CAS  PubMed  Google Scholar 

  • Aronson A, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora R, Battu GS, Bath DS (2000a) Management of insect pests of cauliflower with biopesticides. Indian J Ecol 27:156–162

    Google Scholar 

  • Arora R, Battu GS, Ramakrishnan N (2000b) Microbial pesticides: current status and future outlook. In: Dhaliwal GS, Singh B (eds) Pesticides and environment. Common Wealth Publishers, New Delhi, India, pp 344–395

    Google Scholar 

  • Barker JF (1998) Effect of Bacillus thuringiensis subsp. kurstaki toxin on the mortality and development of the larval stage of the banded sunflower moth (Lepidoptera: Cochylidae). J Econ Entomol 91:1084–1088

    Article  Google Scholar 

  • Battu GS, Arora R, Bath DS (1997) Field performance of Bacillus thuringiensis Berliner based biopesticides for the control of Plutella xylostella (Linnaeus) on cauliflower. In: 1st National Symposium on pest management and horticultural crops, Oct 15–17, Bangalore, Association for Advancement of Pest Management in Horticultural Ecosystems, Bangalore, p 103

    Google Scholar 

  • Baum JA, Johnson TB, Carlton BC (1999) Bacillus thuringiensis: natural and recombinant bioinsecticide products. In: Menn JJ, Hall FR (eds) Biopesticides: use and delivery. Humana Press, Totowa, NJ, pp 189–210

    Google Scholar 

  • Benz G (1971) Synergism of microorganism and chemical insecticides. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic, New York, pp 327–353

    Google Scholar 

  • Biswas S, Upadhyay KD, Kumar A (1994) Bio-efficacy of various Bacillus thuringiensis formulations and dosages against hairy caterpillar, Spilosoma (Diacrisia) obliqua. J Ecotoxicol Environ Monit 4:185–188

    Google Scholar 

  • Biswas S, Kumar A, Upadhyay KD (1996) Effect of sub-lethal concentration of Dipel on the postembryonic development of Spilosoma obliqua. Indian J Entomol 58:359–363

    Google Scholar 

  • Carlson CR, Kolsto AB (1993) A complete physical map of a Bacillus thuringiensis chromosome. J Bacteriol 175:1053–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ceron JA (2001) Productos comerciales nativos y recombinantes a base de Bacillus thuringiensis. In: Caballero P, Ferre J (eds) Bioinsecticidas: Fundamentos y aplicaciones de Bacillus thuringiensis en el control integrado de plagas. Phytoma-Espana, Valencia, pp 153–168

    Google Scholar 

  • Chandle AG, Mane A (1994) Laboratory bioassay of Bacillus thuringiensis Berl. against Plutella xylostella L. Pestology 18:27–28

    Google Scholar 

  • Chandra A, Kaushik NC, Gupta GP (1998) Effect of Bt intoxicated food on growth and development of Helicoverpa armigera. Indian J Entomol 60:286–292

    Google Scholar 

  • Chang L, Grant R, Aronson A (2001) Regulation of the packaging of Bacillus thuringiensis d-endotoxin into inclusions. Appl Environ Microbiol 67:5032–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee H, Choudhury PP (2003) Relative efficacy of some biological pesticides against different larval instars of Pieris brassicae (Linnaeus). Pestic Res J 15:165–168

    Google Scholar 

  • Contreras E, Benito-Jardon M, Lopez-Galiano MJ, Real MD, Rausell C (2015) Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity. Dev Comp Immunol 50:139–145

    Article  CAS  PubMed  Google Scholar 

  • Cornu D, Leple JC, Bonade-Bottino M, Ross A, Augustin S, Delphanque A, Jouamin L, Pilate G, Ahuja MR (1996) Expression of a proteinase inhibitor and a Bacillus thuringiensis delta endotoxin in transgenic poplars. In: Boerjan W, Neale DB (eds) Somatic cell genetics and molecular genetics of trees. Kluwer, Drodrecht, The Netherlands, pp 131–136

    Chapter  Google Scholar 

  • Crickmore N, Bone EJ, Williams JA, Ellar DJ (1995) Contribution of the individual components of the delta-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 131:249–254

    CAS  Google Scholar 

  • Crickmore N, Zeeigler DR, Feitselson J, Schnepf E, VanRie JJ, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeBarjac H, Bonnefoi A (1962) Easai de classficiation biotechnique et serologique de 24 souches de Bacillus du type Bacillus thuringiensis. Entomophaga 7:5–31

    Article  Google Scholar 

  • Dhawan AK (1999) Major insect pests of cotton and their integrated management. In: Upadhay RK, Mukerji KG, Dubey OP (eds) IPM systems in agriculture: cash crops, vol 6. Aditya Book Pvt. Ltd, New Delhi, India, pp 165–255

    Google Scholar 

  • Dov-Ben E, Boussiba S, Zaritsky A (1995) Mosquito larvicidal activity of E. coli with combination of gene from Bacillus thuringiensis sub sp. israelensis. J Bacteriol 177:2851–2857

    Google Scholar 

  • Dulmage HT (1970) Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J Invertebr Pathol 15:232–239

    Article  Google Scholar 

  • Dulmage HT, Martinez E (1973) The effect of continuous exposure to low concentration of delta-endotoxins of Bacillus thuringiensis on the low development of tobacco bud worm, Heliothis virescens. J Invertebr Pathol 22:14–22

    Article  CAS  Google Scholar 

  • Dulmage HT, Correa JA, Martinez AJ (1970) Coprecipitation with lactose as a means of recovering the spore-crystal complex of Bacillus thuringiensis. J Invertebr Pathol 15:15–20

    Article  CAS  PubMed  Google Scholar 

  • Dulmage HT, Graham HM, Martinez E (1978) Interaction between the tobacco bud worm, Heliothis virescens and the d-endotoxin produce by the HD-1 isolates of Bacillus thuringiensis var. kurstaki. Relationship between length of exposure to the toxin and survival. J Invertebr Pathol 32:40–50

    Article  CAS  Google Scholar 

  • EPA (1988) Guidance for the registration of pesticide products containing Bacillus thuringiensis as the active ingredient. Registration standard 540/RS-89-023, Washington, DC

    Google Scholar 

  • Fast PG, Regniere T (1984) Effect of exposure time to Bacillus thuringiensis on mortality and recovery of the spruce bud worm (Lepidotera: Tortricidae). Can Entomol 116:123–130

    Article  Google Scholar 

  • Faust RM (1974) Bacterial diseases. In: George EC (ed) Insect diseases, vol I. Marcel Dekker, New York, pp 111–113

    Google Scholar 

  • Federici BA, Luthy P, Ibana JE (1990) Paraporal body of Bacillus thuringiensis sub-sp. israelensis. In: de Barjac H, Sutherland DJ (eds) Bacterial control of mosquitoes and flies: biochemistry, genetics and application of Bacillus thuringiensis and Bacillus sphaericus. Springer, Drodrecht, The Netherlands, pp 16–44

    Chapter  Google Scholar 

  • Federici BA, Park HW, Sakano Y (2006) Insecticidal protein crystals of Bacillus thuringiensis. In: Shively J (ed) Inclusions in prokaryotes, vol 1, Microbial monograph. Springer, Berlin, pp 196–225

    Chapter  Google Scholar 

  • Feitselson JS, Payne J, Kim L (1992) Bacillus thuringiensis: insects and beyond. Biotechnology 10:271–276

    Article  Google Scholar 

  • Gopalakrishnan C, Gangavisalakshy PN (2005) Field efficacy of commercial formulations of Bacillus thuringiensis var. kurstaki against Papilio demoleus L. on citrus. Entomon 30:93–95

    Google Scholar 

  • Gould F, Anderson A, Jones A, Sumerford D, Heckel DG, Lopez J, Micinski S, Leonard R, Laster M (1997) Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc Natl Acad Sci U S A 94:3519–3523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gujar GT, Kalia V, Kumari A, Kalia V, Kumari A (2000) Bioactivity of Bacillus thuringiensis against the American bollworm, Helicoverpa armigera (Hubner). Ann Plant Prot Sci 8:125–131

    Google Scholar 

  • Gujar GT, Mittal A, Kumari A, Kalia V (2004) Host crop influence on the susceptibility of the American bollworm, Helicoverpa armigera, to Bacillus thuringiensis subsp. kurstaki HD-73. Entomol Exp Appl 113:165–172

    Article  Google Scholar 

  • Gupta GP, Mahapatro GK, Chandra A (2000) Bio-potency of insecticidal crystal proteins of Bacillus thuringiensis against cotton (Gossypium hirsutum) bollworms. Indian J Agric Sci 70:194–196

    Google Scholar 

  • Hannay CL (1953) Crystalline inclusions in aerobic spore-forming bacteria. Nature 172:1004

    Article  CAS  PubMed  Google Scholar 

  • Heimpel AM (1967) A critical review of Bacillus thuringiensis Berliner and other crystalliferous bacteria. Annu Rev Entomol 12:287–322

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Martınez P, Ferre J, Escriche B (2008) Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. J Invertebr Pathol 97:245–250

    Article  PubMed  CAS  Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hongyu Z, Ziniu Y, Wangxi D (2000) Composition and ecological distribution of cry Proteins and their genotypes of Bacillus thuringiensis isolates from Warehouses in China. J Invertebr Pathol 76:191–197

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Buschman LL, Higgins RA (1999) Susceptibility of different instars of European corn borer (Lepidoptera: Crambidae) to diet containing Bacillus thuringiensis. J Econ Entomol 92:547–550

    Article  Google Scholar 

  • Janmaat AF, Bergmann L, Ericsson J (2014) Effect of low levels of Bacillus thuringiensis exposure on the growth, food consumption and digestion efficiencies of Trichoplusia ni resistant and susceptible to Bt. J Invertebr Pathol 119:32–39

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj S (1986) Role of insect pathogens in plant protection. Proc Indian Natl Sci Acad 1:91–107

    Google Scholar 

  • Jenkins JJ, Parrot WL, McCarthy JC, Callahan FE Jr, Berberich SA, Deaton WR (1993) Growth and survival of H. virescens (Lepidotera: Noctuidae) on transgenic cotton containing a truncated from the delta endotoxin gene from Bacillus thuringiensis. J Econ Entomol 86:181–185

    Article  Google Scholar 

  • Justin C, Leo G, Prem JJ, Jayasekhar M (2003) Comparative efficacy of Bacillus thuringiensis Berliner formulations with insecticides against Plutella xylostella (L.) and their effect on Cotesia plutellae Kurdj. on cauliflower. Agric Sci Dig 23:251–254

    Google Scholar 

  • Kalha CS, Singh RP, Kang SS, Hunjan MS, Gupta V, Sharma R (2014) Entomopathogenic viruses and bacteria for insect-pest control. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspectives. Academic, San Diego, pp 225–244

    Chapter  Google Scholar 

  • Kandibane M, Kumar K, Adiroubane D (2010) Effect of Bacillus thuringiensis Berliner formulation against the rice leaf folder Cnaphalocrocis medinalis Guenee (Pyralidae: Lepidoptera). J Biopest 3:445–447

    Google Scholar 

  • Kat H, Sezen K, Belduz AO, Demrbag Z (2005) Characterization of a Bacillus thuringiensis subsp. kurstaki strain isolated from Malacosoma neustria L. (Lepidoptera: Lasiocampidae). Biologia Bratisl 60:301–305

    Google Scholar 

  • Kegley SE, Wise LJ (1998) Pesticides in fruit and vegetables. University Science, Sausalito, CA

    Google Scholar 

  • Khan E, Makhdoom R, Karim S, Riazuddin S (1995) Entomocidal activity of indigenous Bt isolates against two important pests. T. incertulas and C. medinalis. In: Malik KA, Naseem A, Khalid M (eds), Proceedings of International symposium on biotechnology and sustainable development, pp 145–153

    Google Scholar 

  • Khan MA, Mumtaz R, Khan MA (2010) Management of Spilarctia obliqua through Bt and Chlorpyrifos combinations. Ann Plant Prot Sci 18:499–500

    Google Scholar 

  • Khanna V, Gupta VK, Kanta U, Dhaliwal HS, Sekhon SS (1995) Control of maize borer, Chilo partellus (Swinhoe) by Bacillus thuringiensis based bioinsecticides. J Entomol Res 19:101–105

    Google Scholar 

  • Koni PA, Ellar DJ (1994) Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins. Microbiology 140:1869–1880

    Article  CAS  PubMed  Google Scholar 

  • Koul O (2011) Microbial biopesticides: opportunities and challenges. CAB Rev Perspect Agric Veterinary Sci Nutr Nat 6:1–26

    Google Scholar 

  • Kulkarni UV, Amonkar SV (1988) Microbial control of Heliothis armigera (Hb): Part I—Isolation and characterization of a new strain of Bacillus thuringiensis and comparative pathogenicity of three isolates of B. thuringiensis against H. armigera. Indian J Exp Biol 26:703–707

    Google Scholar 

  • Kurstak E (1962) Donnessur I epizootie bacterienne naturelle prouogue por un Bacillus du type Bacillus thuringiensis sur phestia kuehniella Zeller. Entomophaga Mem Hous Ser 2:245–247

    Google Scholar 

  • Lee HK, Cheong H, Gill SS (1998) Microbial control of insects: use of bacterial insecticides. In: Dhaliwal GS, Hernrichs EA (eds) Critical issues in insect pests management. Commonwealth Publishers, New Delhi, pp 389–425

    Google Scholar 

  • Lereclus D, Delecluse A, Lecadet MM (1993) Diversity of Bacillus thuringiensis toxins and genes. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, UK, pp 37–69

    Google Scholar 

  • Li H, Bouwer G (2012) Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. J Invertebr Pathol 109:110–116

    Article  CAS  PubMed  Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal d-endotoxin from Bacillus thuringiensis at 2.5 Ã… resolutions. Nature 353:815–821

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Wan QY, Wang MO, Kang S, Niu Z (2000) Characteristics of two new isolates of Bacillus thuringiensis. J Hunan Agric Univ 26:363–365

    Google Scholar 

  • Liu YB, Tabashnik BE (1997) Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proc R Soc Lond B 264:605–610

    Article  Google Scholar 

  • Liu ZD, Sun M, Yu ZN, Zaritsky A, Ben DE, Manasherob R (1999) A preliminary study of the P19 gene from Bacillus thuringiensis subsp. israelensis. Acta Microbiol Sin 39:114–119

    Google Scholar 

  • Ma XM, Liu XX, Ning X, Zhang B, Han F, Guan XM, Tan YF, Zhang QW (2008) Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera: Crambidae). J Invertebr Pathol 99:123–128

    Article  CAS  PubMed  Google Scholar 

  • Mahtur YK, Kishor P (1987) Recent concept of integrated management of key pests of agriculture crops. In: Mathur YK, Bhattacharya AK, Pandey ND, Upadhyaya KD, Srivastava JP (eds) Recent advances in entomology. Gopal Prakashan, Kanpur, India, pp I–X

    Google Scholar 

  • Mariapackiam S, Ignacimuthu S (2008) Larvicidal & histopathological effects of oil formulation on Spodoptera litura. In: Ignacimuthu S, Jeyaraj S (eds) Recent trends in insect pest management. Elite Publishing House Pvt. Ltd., New Delhi, India

    Google Scholar 

  • McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195

    Article  CAS  PubMed  Google Scholar 

  • McGaughey WH, Gould F, Gelernter W (1998) Bt resistance management. Nat Biotechnol 16:144–146

    Article  CAS  PubMed  Google Scholar 

  • Morris ON (1973) Dosage mortality studies with commercial, Bacillus thuringiensis, sprayed in a modified potter tower against some forest insect. J Invertebr Pathol 22:108–114

    Article  Google Scholar 

  • Narayanamma VL, Savithri P (2003) Evaluation of biopesticides against citrus butterfly, Papilio demoleus L. on sweet orange. Indian J Plant Prot 31:105–106

    Google Scholar 

  • Navon A, Federici BA, Walsh TS, Peiper UM (1992) Mandibular adduction force of Heliothis virescens (Lepidoptera: Noctuidae) larvae fed the insecticidal crystals of Bacillus thuringiensis. J Econ Entomol 85:2138–2143

    Article  Google Scholar 

  • Nethravathi CJ, Hugar PS, Krishnaraj PU, Vastrad AS, Awaknavar JS (2010) Bioefficacy of native Sikkim Bacillus thuringiensis (Berliner) isolates against lepidopteran insects. J Biopest 3:448–451

    Google Scholar 

  • Ninfa M, Garcia R (2009) Biopesticide production from Bacillus thuringiensis: an environmentally friendly alternative. Recent Pat Biotechnol 3:28–36

    Article  Google Scholar 

  • Paul B, Paul S, Khan MA (2011) A potential economical substrate for large-scale production of Bacillus thuringiensis var. kurstaki for caterpillar control. Biocontrol Sci Technol 21:1363–1368

    Article  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnology 8:939–943

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Burgess M (1985) Effects of single versus combinations of insecticides on the development of resistance. Environ Entomol 14:582–589

    Article  CAS  Google Scholar 

  • Prabakaran G, Hoti SL, Manonmani AM, Balaraman K (2008) Coconut water as a cheap source for the production of δ endotoxin of Bacillus thuringiensis var. israelensis, a mosquito control agent. Acta Trop 105:35–38

    Article  CAS  PubMed  Google Scholar 

  • Pramanik A, Somchoudhury AK (2002) Relative efficacy of Bacillus thuringiensis Berliner on different larval stage of Spilosoma obliqua Walker (Arctiide: Lepidoptera). Adv Plant Sci 15:29–33

    Google Scholar 

  • Rao NBVC, Singh VS (2003) Eco-friendly management of rice leaf folder, Cnaphalocrocis medinalis (Guenee). Indian J Plant Prot 31:17–19

    Google Scholar 

  • Salama HS, Foda MS, El Sharaby A, Matter M, Khalafallah M (1981) Development of some lepidopterous cotton pests as affected by exospore to sub-lethal level of endotoxin of Bacillus thuringiensis for different period. J Invertebr Pathol 38:220–227

    Article  CAS  Google Scholar 

  • Salama HS, Foda MS, Dulmage HT, El-Sharaby A (1983) Novel fermentation media for production of δ-endotoxins from Bacillus thuringiensis. J Invertebr Pathol 41:8–19

    Article  Google Scholar 

  • Sareen V, Rathore YS, Bhattacharya AK (1983) Influence of Bacillus thuringiensis var. thuringiensis on the food utilization of Spodoptera litura (Fabricius). J Appl Entomol 95:253–258

    Google Scholar 

  • Schnepf HE, Cricmore N, Vanrie J, Lereclus D, Baum J, Feitelson J, Zfider DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shojaaddini M, Lopez MJ, Moharramipour S, Khodabandeh M, Talebi AA, Vilanova C, Latorre A, Porcar M (2012) A Bacillus thuringiensis strain producing epizootics on Plodia interpunctella: a case study. J Stor Prod Res 48:52–60

    Article  Google Scholar 

  • Silva Werneck JO, De Souza MT, de S. Dias JMC, Ribeiro BM (1999) Characterization of Bacillus thuringiensis subsp. kurstaki strain S93 effective against the fall armyworm (Spodoptera frugiperda). Can J Microbiol 45:464–471

    Article  CAS  Google Scholar 

  • Silva-Werneck JO, Ellar DJ (2008) Characterization of a novel Cry9Bb d-endotoxin from Bacillus thuringiensis. J Invertebr Pathol 98:320–328

    Article  CAS  PubMed  Google Scholar 

  • Singh MK, Raju SVS, Singh HN (2002) Larval age affects susceptibility to Bacillus thuringiensis in diamondback moth, Plutella xylostella. Indian J Entomol 64:475–483

    Google Scholar 

  • Singh MK, Raju SVS, Singh HN (2003) Laboratory bioassay of Bacillus thuringiensis formulation against diamondback moth, Plutella xylostella. Indian J Entomol 65:86–93

    Google Scholar 

  • Srivastava KL (1991) Comparison of the effect of Bacillus thuringiensis and calcium arsenate on the body weight of Achaea janata L. New Agric 2:171–174

    Google Scholar 

  • Srivastava KL, Ramakrishnan N (1980) Potency of Bactospeine and Dipel, two commercial formulations of Bacillus thuringiensis Berliner against castor semilooper, Achaea janata Linn. Indian J Entomol 42:769–772

    Google Scholar 

  • Steinhaus EA (1951) Possible use of Bacillus thuringiensis as an aid in the biological control of the alfalfa caterpillar. Hilgarida 20:359–381

    Article  Google Scholar 

  • Stotzky G (2002) Release, persistence, and biological activity in soil of insecticidal proteins from Bacillus thuringiensis. In: Letourneau DK, Burrows BE (eds) Genetically engineered organisms: assessing environmental and human health effects. CRC Press, Boca Raton, pp 187–222

    Google Scholar 

  • Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K, Adang MJ (1994) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A 91:4120–4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamez-Guerra P, Castro-Franco R, Medrano-Roldan H, Mcguire MR, Galan-Wong LJ, Luna-Olvera HA (1998) Laboratory and field comparisons of strains of Bacillus thuringiensis for activity against noctuid larvae using granular formulations (Lepidoptera). J Econ Entomol 91:86–93

    Article  Google Scholar 

  • Tan W, Liang G, Guo Y (1999) Resistance alleviation in the larvae of cotton bollworms to fenvalerate after pre-treatment with Bacillus thuringiensis. Entomol Sin 6:153–161

    Google Scholar 

  • Tiwari LD, Mehrotra KN (1980) Effect Bacillus thuringiensis Ber., on the body weight and haemolymph volume of Achaea janata (Linn.) larvae. J Entomol Res 4:153–156

    Google Scholar 

  • Valicente FH, Fonseca MM (2004) Susceptibility of fall armyworm, Spodoptera frugiperda, to different strains of Bacillus thuringiensis. Rev Bras Milho Sorgo 3:21–29

    Article  Google Scholar 

  • Van Frankenhuyzen K (1993) The challenge of Bacillus thuringiensis. In: Entwistle PE, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, UK, pp 1–35

    Google Scholar 

  • Vimala Devi PS, Ravinder T, Jaidev C (2005) Cost-effective production of Bacillus thuringiensis by solid-state fermentation. J Invertebr Pathol 88:163–168

    Article  CAS  Google Scholar 

  • Wang DS, Yuan QC, Ma CZ, Gu ZR, Zhao JY (1994) Food consumption and survival rate and time of H. armigera (Lepidoptera: Noctuidae) larvae following intoxication by different strains of Bacillus thuringiensis. Acta Agric Shanghai 10:57–60

    CAS  Google Scholar 

  • Wirth MC, Georghiou GP, Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc Natl Acad Sci U S A 94:10536–10540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Lan Y, Huang D, Peng Y, Huang Z, Xu L, Gelbic I, Carballar-Lejarazu R, Guan X, Zhang L, Zou S (2014) Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation. J Econ Entomol 107:137–143

    Article  PubMed  Google Scholar 

  • Yilmaz S, Ayvaz A, Akbulut M, Azizoglu U, Karaborklu S (2012) A novel Bacillus thuringiensis strain and its pathogenicity against three important pest insects. J Stor Prod Res 51:33–40

    Article  Google Scholar 

  • Zareie R, Shayesteh N, Pourmirza AA (2003) Starch encapsulating of Bacillus thuringiensis Berliner containing different additives and evaluation of their efficacy. Iranian J Agric Sci 34:855–862

    CAS  Google Scholar 

Download references

Acknowledgment

Senior author is thankful to the Head, Biology Department, Faculty of Science, Jazan University, Jazan, for his encouragement to study microbial management of lepidopteran pests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Aslam Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, M.A. et al. (2016). Potential of Bacillus thuringiensis in the Management of Pernicious Lepidopteran Pests. In: Hakeem, K., Akhtar, M. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-29573-2_13

Download citation

Publish with us

Policies and ethics