Advertisement

Isolation and Identification of Allelochemicals from Ascocarp of Tuber Species

Chapter

Abstract

Truffles (Tuber spp.) belong to the fruiting bodies of certain hypogeous ascomycetes, which may grow in ectomycorrhizal symbioses with specified shrub and tree species. Some truffles, notably Tuber melanosporum and T. aestivum, form ‘burnt’ area, also known as ‘burn’ or ‘brûlé’ around their symbiotic hosts. Increasingly focused interest has been centred on an in-depth research and study of truffle methanolic extracts and their fatty acid allelochemicals. These metabolites have been recognised as biochemical and have great influence in the burnt formation. This present chapter contributes the knowledge of truffle methanolic extracts and fatty acids regarding allelopathic activity to understand the applicability and sustainability of truffles in agricultural practices for the management of weed and plant pathogens. However, it will also be helpful to the companies specialising in the processing of truffle and the recovery and reinsertion of waste truffles through the production process for the isolation of important allelopathic compounds.

Keywords

Bioassay Fatty acids LC/MS analysis Tuber aestivum T. borchii T. magnatum T. melanosporum 

References

  1. An M (2005) Mathematical modelling of dose-response relationship (hormesis) in allelopathy and its application. Nonlinearity Biol Toxicol Med 3:153–172PubMedPubMedCentralCrossRefGoogle Scholar
  2. Angelini P, Granetti B (2001) Individuation and micropropagation of some clones of Populus alba L. envisaging their use in truffle cultivation. In: Proceedings of the Fifth International Congress on the Science and cultivation of truffles, French Federation of Trufficulteurs. pp 289–292Google Scholar
  3. Angelini P, Costamagna L, Ciani M (1998) Bacterial ecology of ascocarps of the Tuber sp.pl.: characterization of functional groups and their capability to metabolize sulfite and organic sulfur compounds. Ann Microbiol 48:59–65Google Scholar
  4. Angelini P, Granetti B, Pagiotti R (2008) Effect of antimicrobial activity of Melaleuca alternifolia essential oil on antagonistic potential of Pleurotus species against Trichoderma harzianum in dual culture. World J Microbiol Biotechnol 24:197–202CrossRefGoogle Scholar
  5. Angelini P, Pagiotti R, Venanzoni R, Granetti B (2009) Antifungal and allelopathic effects of Asafoetida against Trichoderma harzianum and Pleurotus spp. Allelopathy J 23:357–368Google Scholar
  6. Angelini P, Venanzoni R, Pagiotti R, Tirillini B, Granetti B, Donnini D (2010) Attività allelopatica, antibatterica ed antiossidante di estratti metanolici di Tuber magnatum e T. melanosporum. In: Proceeding of the 3rd International Congress on Truffle, Umbria Region, Communities of the Martani, Serano and Subasio Mountains, Spoleto, Italy, 25–28 Nov 2008. Federici typography, Terni, Italy, pp 308–314Google Scholar
  7. Angelini P, Venanzoni R, Pagiotti R, Tirillini B, Granetti B, Donnini D (2010b) Biological activities of methanolic extract from Tuber aestivum, T. borchii, and T. brumale f. moschatum. Osterr Z Pilzk 19:281–290Google Scholar
  8. Angelini P, De Angelis MC, Guerzoni RP, Gigante D, Rubini A, Properzi P, Venanzoni R (2014a) Wood identification of pile dwellings from the Bronze Age San Savino site (Lake Trasimeno, central Italy). Plant Biosyst 148:713–722CrossRefGoogle Scholar
  9. Angelini P, Bricchi E, Gigante D, Poponessi S, Spina A, Venanzoni R (2014b) Pollen morphology of some Amaranthaceae common in Italy. Flora Medit 24:247–272Google Scholar
  10. Angelini P, Compagno R, Arcangeli A, Bistocchi G, Gargano ML, Venanzoni R, Venturella G (2016) Macrofungal diversity and ecology in two Mediterranean forest types. Plant Biosyst. doi: 10.1080/11263504.2014.987844 Google Scholar
  11. Angelini P, Tirillini B, Properzi A, Rol C, Venanzoni R (2015) Identification and bioactivity of the growth inhibitors in Tuber spp. methanolic extracts. Plant Biosyst 149:1000–1009. doi: 10.1080/11263504.2014.983575 Google Scholar
  12. Ashrafi ZY, Rahnavard A, Sadeghi S, Alizade HM, Mashhadi HR (2008) Study of the allelopathic potential of extracts of Azadirachta indica (Neem). Online J Biol Sci 8:57–61CrossRefGoogle Scholar
  13. Azul AM, Nunes J, Ferreira I, Coelho AS, Veríssimo P, Trovão J, Campos A, Castro P, Freitas H (2014) Valuing native ectomycorrhizal fungi as a Mediterranean forestry component for sustainable and innovative solutions. Botany 92:161–171CrossRefGoogle Scholar
  14. Belfiori B, Riccioni C, Tempesta S, Pasqualetti M, Paolocci F, Rubini A (2012) Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds. FEMS Microbiol Ecol 81:547–561PubMedCrossRefGoogle Scholar
  15. Berestetskiy AO (2008) A review of fungal phytotoxins: from basic studies to practical use. Appl Biochem Microbiol 44:453–465CrossRefGoogle Scholar
  16. Bertholdsson NO (2012) Allelopathy—a tool to improve the weed competitive ability of wheat with herbicide-resistant black-grass (Alopecurus myosuroides Huds.). Agron J 2:284–294CrossRefGoogle Scholar
  17. Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20Google Scholar
  18. Bhattacharya SK (2013) Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr Eye Res 38:417–427PubMedCrossRefGoogle Scholar
  19. Bonito G, Smith ME, Brenneman T, Rytas Vilgalys R (2012) Assessing ectomycorrhizal fungal spore banks of truffle producing soils with pecan seedling trap-plants. Plant Soil 356:357–366CrossRefGoogle Scholar
  20. Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2007) Assessment of the potential toxicity of herbicides and their degradation products to non target cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ Toxicol 22:78–91PubMedCrossRefGoogle Scholar
  21. Brenna JT (2013) Fatty acid analysis by high resolution gas chromatography and mass spectrometry for clinical and experimental applications. Curr Opin Clin Nutr Metab Care 16:548–554PubMedCrossRefGoogle Scholar
  22. Büntgen U, Egli S, Camarero JM, Fischer EM, Stobbe U, Kauserud H, Tegel W, Sproll L, Stenseth NC (2012) Drought-induced decline in Mediterranean truffle harvest. Nat Clim Change 2:827–829CrossRefGoogle Scholar
  23. Busi R, Vila-Aiub MM, Beckie HJ, Gaines TA, Goggin DE, Kaundun SS, Lacoste M, Neve P, Nissen SJ, Norsworthy JK, Renton M, Shaner DL, Tranel PJ, Wright T, Yu Q, Powles SB (2013) Herbicide-resistant weeds: from research and knowledge to future needs. Evol Appl 6:1218–1221PubMedPubMedCentralCrossRefGoogle Scholar
  24. Busse MD, Fiddler GO, Ratcliff AW (2004) Ectomycorrhizal formation in herbicide-treated soils of differing clay and organic matter content. Water Air Soil Pollut 152:23–34CrossRefGoogle Scholar
  25. Cahill JF (1999) Fertilization effects on interactions between above-and belowground competition in an old field. Ecology 80:466–480CrossRefGoogle Scholar
  26. Chandra S, Chatterjee P, Dey P, Bhattacharya S (2012) Allelopathic effect of Ashwagandha against the germination and radicle growth of Cicer arietinum and Triticum aestivum. Pharma Res 4:166–169CrossRefGoogle Scholar
  27. Chevalier G (1979) L’Espece Tuber aestivum Vitt.: II—Ecologie. The International Society for Mushroom. Science 10:977–993Google Scholar
  28. Chevalier G (2010) La truffe d’Europe (Tuber aestivum): limites geographiques, ecologie et culture. Aust J Mycol 19:249–259Google Scholar
  29. Chou CH (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev Plant Sci 18:609–636CrossRefGoogle Scholar
  30. Christopolous V, Psoma P, Diamandis S (2013) Site characteristics of Tuber magnatum in Greece. Acta Mycol 48:27–32CrossRefGoogle Scholar
  31. Comandini O, Contu M, Rinaldi AC (2006) An overview of Cistus ectomycorrhizal fungi. Mycorrhiza 16:381–395PubMedCrossRefGoogle Scholar
  32. Cruz-Ortega R, Lara-Núñez A, Anaya AL (2007) Allelochemical stress can trigger oxidative damage in receptor plants: mode of action of phytotoxicity. Plant Signal Behav 2:269–270PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cullere L, Ferreira V, Chevret B, Venturini ME, Sánchez-Gimeno AC, Blanco D (2010) Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography-olfactometry. Food Chem 122:300–306CrossRefGoogle Scholar
  34. Desbois AD, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642PubMedCrossRefGoogle Scholar
  35. Duke SO, Scheffler BE, Dayan FE (2001) Allelochemicals as herbicides. In: Bonjoch NP, Reigosa MJ (eds). 1st European OECD Allelopathy Symposium: Physiological aspects of allelopathy, Vigo, Spain. Printed by Gamesal, SA. pp 47–59Google Scholar
  36. Duke SO, Bajsa J, Pan Z (2013) Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 39:333–347PubMedPubMedCentralCrossRefGoogle Scholar
  37. Eaton G, Ayres M (2002) Plasticity and constraint in growth and protein mineralization of ectomycorrhizal fungi under simulated nitrogen deposition. Mycologia 94:921–932PubMedCrossRefGoogle Scholar
  38. Figliuolo G, Trupo G, Mang S (2013) A realized Tuber magnatum niche in the upper Sinni area (South Italy). Open J Genet 3:102–110CrossRefGoogle Scholar
  39. Fouillen L, Colsch B, Lessire R (2013) The lipid world concept of plant lipidomics. Adv Bot Res 67:331–376CrossRefGoogle Scholar
  40. Garcia-Montero LG, Moreno D, Monleon VJ, Arredondo-Ruiz F (2014) Natural production of Tuber aestivum in central Spain: Pinus spp. versus Quercus spp. brûles. For Syst 23:394–399Google Scholar
  41. Gerke J, Braus GH (2014) Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Appl Microbiol Biotechnol 98:8443–8455PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gezer K, Kaygusuz O, Çelik A, Işiloğlu M (2014) Ecological characteristics of truffles growing in Denizli Province, Turkey. J Food Agric Environ 12:1105–1109Google Scholar
  43. Gogan AC, Nagy Z, Dégi Z, Bagi I, Dimény J (2012) Ecological characteristics of a Hungarian summer truffle (Tuber aestivum Vittad.) producing area. Acta Mycol 47:133–138CrossRefGoogle Scholar
  44. Granetti B, De Angelis A, Materozzi G (2005) Umbria terra di tartufi. Assessorato Regionale Agricoltura, Foreste, Caccia e Pesca, Umbra, p 303Google Scholar
  45. Gryndler M, Hršelová H, Soukupová L, Streiblová E, Valda S, Borovička J, Gryndlerová H, Gažo J, Miko M (2011) Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers. FEMS Microbiol Lett 318:84–91PubMedCrossRefGoogle Scholar
  46. Hall IR, Brown GT, Zambonelli A (2007) Taming the truffle, the history, lore and science of the ultimate mushroom. Timber Press, PortlandGoogle Scholar
  47. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178PubMedCrossRefGoogle Scholar
  48. Hartler J, Tharakan R, Köfeler HC, Graham DR, Thallinger GG (2013) Bioinformatics tools and challenges in structural analysis of lipidomics MS/MS data. Brief Bioinform 14:375–390PubMedCrossRefGoogle Scholar
  49. Heisey RM, Deprank J, Putnam AR (1985) A survey of soil microorganisms for herbicidal activity. In: Thompson AC (ed) The chemistry of allelopathy. American Chemical Society, Washington, DCGoogle Scholar
  50. Hilszczanska D, Rosa-Gruszecka A, Szmidla H (2014) Characteristic of Tuber spp. localities in natural stands with emphasis on plant species composition. Acta Mycol 49:267–277CrossRefGoogle Scholar
  51. Iotti M, Lancellotti E, Hall I, Zambonelli A (2010) The ectomycorrhizal community in natural Tuber borchii grounds. FEMS Microbiol Ecol 72:250–260PubMedCrossRefGoogle Scholar
  52. Iotti M, Leonardi M, Oddis M, Salerni E, Baraldi E, Zambonelli A (2012) Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiol 12:1471–2180CrossRefGoogle Scholar
  53. Iotti M, Leonardi M, Lancellotti E, Salerni E, Oddis M, Leonardi P, Perini C, Pacioni G, Zambonelli A (2014) Spatio-temporal dynamic of Tuber magnatum mycelium in natural truffle grounds. PLoS One 9:e115921PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jeandroz S, Murat C, Wang Y, Bonfante P, Le Tacon F (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J Biogeogr 35:815–829CrossRefGoogle Scholar
  55. Kakisawa H, Asari F, Kusumi T, Toma T, Sakurai T, Oohusa T, Hara Y, Chihara M (1988) An allelopathic fatty-acid from the brown alga Cladosiphon okamuranus. Phytochemistry 27:731–735CrossRefGoogle Scholar
  56. Keller NP, Turner G (2012) Fungal secondary metabolism: methods and protocols, methods in molecular biology, vol 944. Springer, New YorkCrossRefGoogle Scholar
  57. Khaliq A, Matloob A, Aslam F, Mushtaq MN, Khan MB (2012) Toxic action of aqueous wheat straw extract on horse e purslane. Planta Daninha 30:269–278CrossRefGoogle Scholar
  58. Khanh TD, Elzaawely AA, Chung IM, Ahn JK, Tawata S, Xuan TD (2007) Role of allelochemical for weed management in rice. Allelopathy J 19:85–96Google Scholar
  59. Kim KW, Kim KU (2000) Searching for rice allelochemicals. In: Kim KU, Shin DH (eds), Proceedings of the international workshop on rice allelopathy, Tageu, Korea, pp 73–78Google Scholar
  60. Lam SM, Shui G (2013) Lipidomics as a principal pool for advancing biomedical research. J Genet Genomics 40:375–390PubMedCrossRefGoogle Scholar
  61. Lawrynowicz M, Krzyszczyk T, Faldziński M (2008) Occurrence of black truffles in Poland. Acta Mycol 43:143–151CrossRefGoogle Scholar
  62. Le Tacon F, Zeller B, Plain C, Hossann C, Bréchet C, Robin C (2013) Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique. PLoS One 8:e64626PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li ZH, Wang Q, Xiao R, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952PubMedCrossRefGoogle Scholar
  64. Li M, Zhou Z, Nie H, Bai Y, Liu H (2011) Recent advances of chromatography and mass spectrometry in lipidomics. Anal Bioanal Chem 399:243–249PubMedCrossRefGoogle Scholar
  65. Lynch JM, Clark SJ (1984) Effects of microbial colonization of barley (Hordeum vulgare L.) roots on seedling growth. J Appl Bacteriol 56:47–52CrossRefGoogle Scholar
  66. Macias FA, Chinchilla N, Varela RM, Molinillo JMG (2006) Bioactive steroids from Oryza sativa L. Steroids 71:603–608PubMedCrossRefGoogle Scholar
  67. Mamoun M, Olivier JM (1997) Mycorrhizal inoculation of cloned hazels by Tuber melanosporum: effect of soil disinfestation and co-culture with Festuca ovina. Plant Soil 188:221–226CrossRefGoogle Scholar
  68. Mardani R, Yousefi AR, Fotovat R, Oveisi M (2014) New bioassay method to find the allelopathic potential of wheat cultivars on rye (Secale cereale L.) seedlings. Allelopathy J 33:53–62Google Scholar
  69. Martin JF, García-Estrada C, Zeilinger S (2014) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New YorkCrossRefGoogle Scholar
  70. Milenkovic M, Marjanović Ž, Grebenc T, Glišić A (2009) Ecological specifity and molecular diversity of truffles (genus Tuber) originating from mid-west of the Balkan Peninsula. Sidowia 62:67–87Google Scholar
  71. Molisch H (1937) The influence of one plant on another: allelopathy. Scientific Publishers, IndiaGoogle Scholar
  72. Mominul Islam AKM, Kato-Noguchi H (2013) Plant growth inhibitory activity of medicinal plant Hyptis suaveolens: could allelopathy be a cause. Emir J Food Agric 25:692–701Google Scholar
  73. Muller CH (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull Torrey Bot Club 93:332–351CrossRefGoogle Scholar
  74. Murat C, Rubini A, Riccioni C, De la Varga H, Akroume E, Belfiori B, Guaragno M, Le Tacon F, Robin C, Halkett F, Martin F, Paolocci F (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199:176–187PubMedCrossRefGoogle Scholar
  75. Noguchi HK (2008) Allelochemicals released from rice plants. Jpn J Plant Sci 2:18–25Google Scholar
  76. Olivera A, Fischer CR, Bonet JA, Martìnez de Aragòn J, Oliach D, Colinas C (2011) Weed management and irrigation are key treatment in emerging black truffle (Tuber melanosporum) cultivation. New For 42:227–239CrossRefGoogle Scholar
  77. Olivera A, Bonet JA, Palacio L, Liu B, Colinas C (2014) Weed control modified Tuber melanosporum mycelial expansion in young oak plantations. Ann For Sci 71:495–504CrossRefGoogle Scholar
  78. Olivier JPM, Savignac JC, Sourzat P (2012) Truffe et trufficulture. Fanlac, Périgueux, France, p 398Google Scholar
  79. Otsing E, Tedersoo L (2015) Temporal dynamics of ectomycorrhizal fungi and persistence of Tuber melanosporum in inoculated Quercus robur seedlings in North Europe. Mycorrhiza 25:61–66PubMedCrossRefGoogle Scholar
  80. Pagiotti R, Angelini P, Rubini A, Tirillini B, Granetti B, Venanzoni R (2011) Identification and characterisation of human pathogenic filamentous fungi and susceptibility to Thymus schimperi essential oil. Mycoses 54:e364–e376PubMedCrossRefGoogle Scholar
  81. Parlade J, De la Varga H, De Miguel AM, Sáez R, Pera J (2013) Quantification of extraradical mycelium of Tuber melanosporum in soils from truffle orchards in northern Spain. Mycorrhiza 23:99–106PubMedCrossRefGoogle Scholar
  82. Payen T, Murat C, Bonito G (2014) Truffle phylogenomics: new insights into truffle evolution and truffle life cycle. In: Martin F (ed) Advances in botanical research, vol 70. Elsevier Academic Press, London, pp 211–234Google Scholar
  83. Perotto S, Angelini P, Bianciotto V, Bonfante P, Girlanda M, Kull T, Mello A, Pecoraro L, Perini C, Persiani A, Saitta A, Sarrocco S, Vannacci G, Venanzoni R, Venturella G, Selosse MA (2013) Interactions of fungi with other organisms. Plant Biosyst 147:208–218CrossRefGoogle Scholar
  84. Picco AM, Angelini P, Ciccarone C, Franceschini A, Ragazzi A, Rodolfi M, Varese GC, Zotti M (2011) Biodiversity of emerging pathogenic and invasive fungi in plants, animals and humans in Italy. Plant Biosyst 145:988–996CrossRefGoogle Scholar
  85. Piltaver A, Ratosa I (2006) A contribution to better knowledge of hypogeous fungi in Slovenia. J For 64:303–312Google Scholar
  86. Quintana N, Kassis EG, Stermitz FR, Vivanco JM (2009) Phytotoxic compounds from roots of Centaurea diffusa Lam. Plant Signal Behav 4:9–14PubMedPubMedCentralCrossRefGoogle Scholar
  87. Reicosky DC, Allmaras RR, Shrestha A (2003) Advances in tillage research in North American cropping systems. In: Shrestha A (ed) Cropping systems: trends and advances. Part I. Haworth, New York, pp 75–125Google Scholar
  88. Reigosa MJ, Pedrol N, González L (2006) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, The Netherlands, pp 451–463CrossRefGoogle Scholar
  89. Reyna S, Garcia-Barreda S (2014) Black truffle cultivation: a global reality. For Syst 23:317–328Google Scholar
  90. Ribeiro B, de Pinho PG, Andrade PB, Baptista P, Valentão P (2009) Fatty acid composition of wild edible mushrooms species: a comparative study. Microchem J 93:29–35CrossRefGoogle Scholar
  91. Ricard JM, Bergounoux F, Callot G, Chevalier G, Olivier JM, Pargney JC, Sourzat P (2003) La Truffe. Guide technique de trufficulture. Centre Technique Interprofessionnel Fruits Légumes, ParisGoogle Scholar
  92. Rice EL (1984) Allelopathy, 2nd edn. Academic, London, UK, p 422Google Scholar
  93. Rice EL (1995) Biological control of weeds and plant diseases: advances in applied allelopathy. University of Oklahoma Press, OklahomaGoogle Scholar
  94. Rubini A, Paolocci F, Riccioni C, Vendramin GG, Arcioni S (2005) Genetic and phylogeographic structures of the symbiotic fungus Tuber magnatum. Appl Environ Microbiol 71:6584–6589PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rubini A, Belfiori B, Riccioni C, Arcioni S, Martin F, Paolocci F (2011) Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants. New Phytol 189:723–735PubMedCrossRefGoogle Scholar
  96. Salam MA, Kato-Noguchi H (2010) Allelopathic potential of methanol extract of Bangladesh rice seedlings. Asian J Crop Sci 2:70–77CrossRefGoogle Scholar
  97. Salerni E, Gardin L, Baglioni F, Perini C (2013) Effects of wild boar grazing on the yield of summer truffle (Tuscany, Italy). Acta Mycol 48:73–80CrossRefGoogle Scholar
  98. Sancholle M, Weete JD, Kulifaj M, Montant C (1988) Changes in lipid composition during ascocarp development of the truffle Tuber melanosporum. Mycologia 80:900–903CrossRefGoogle Scholar
  99. Schone C, Höfler H, Walch A (2013) MALDI imaging mass spectrometry in cancer research: combining proteomic profiling and histological evaluation. Clin Biochem 46:539–545PubMedCrossRefGoogle Scholar
  100. Selim SM, Zayed MS, Atta HM (2012) Evaluation of phytotoxicity of compost during composting process. J Nat Sci 10:69–77Google Scholar
  101. Splivallo R (2008) Biological significance of truffle secondary metabolites. In: Karlowsky P (ed) Secondary metabolites in soil ecology Part III. Springer, Berlin, pp 141–165CrossRefGoogle Scholar
  102. Splivallo R, Bossi S, Maffei M, Bonfante P (2007a) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598PubMedCrossRefGoogle Scholar
  103. Splivallo R, Novero M, Bertea C, Bossi S, Bonfante P (2007b) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424PubMedCrossRefGoogle Scholar
  104. Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699PubMedCrossRefGoogle Scholar
  105. Stobbe U, Stobbe A, Sproll L, Tegel W, Peter M, Büntgen U, Egli S (2013) New evidence for the symbiosis between Tuber aestivum and Picea abies. Mycorrhiza 23:669–673PubMedCrossRefGoogle Scholar
  106. Storch J, McDermott L (2009) Structural and functional analysis of fatty acid-binding proteins. J Lipid Res 50S:S126–S131Google Scholar
  107. Streiblova E, Gryndlerová H, Valda S, Gryndler M (2010) Tuber aestivum—hypogeous fungus. Czech Mycol 61:163–173Google Scholar
  108. Streiblova E, Gryndlerová H, Gryndler M (2012) Truffle brûlé: an efficient fungal life strategy. FEMS Microbiol Ecol 80:1–8PubMedCrossRefGoogle Scholar
  109. Tang Y, Li YY, Li HM, Wan DJ, Tang YJ (2011) Comparison of lipid content and fatty acid composition between Tuber fermentation mycelia and natural fruiting bodies. J Agric Food Chem 59:4736–4742PubMedCrossRefGoogle Scholar
  110. Taschen E, Sauve M, Taudiere A, Parlade J, Selosse M, Richard F (2015) Whose truffle is this. Distribution patterns of ECM fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities. Environ Microbiol 17:2747–2761PubMedCrossRefGoogle Scholar
  111. Ullrich F, Grosch W (1987) Identification of the most intense volatile flavour compounds formed during autoxidation of linoleic acid. Eur Food Res Technol 184:277–282Google Scholar
  112. Weden C, Chevalier G, Danell E (2004) Tuber aestivum (syn. T. uncinatum) biotopes and their history on Gotland, Sweden. Mycol Res 108:304–310PubMedCrossRefGoogle Scholar
  113. Yun W, Liu PG (2009) Achievements and challenges of research on truffles in China. Acta Bot Yunnanica 16S:1–9Google Scholar
  114. Zacchi L, Vaughan-Martini A, Angelini P (2003) Yeast distribution in a truffle field ecosystem. Ann Microbiol 53:275–282Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
  2. 2.Department of BotanyGandhi Faiz-E-Aam CollegeShahjahanpurIndia
  3. 3.Institute of BotanyUniversity of UrbinoUrbinoItaly

Personalised recommendations