Skip to main content

Motor Skills

  • Chapter
  • First Online:
  • 728 Accesses

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

Abstract

Physical exercise is an important countermeasure during Space missions. Since exercising requires motor skills, this chapter reviews the known deficits of motor skills in weightlessness and points out how preflight mental practice might improve motor skills in weightlessness and thus increase the efficiency of onboard workouts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aglioti S, DeSouza JFX, Goodale MA (1995) Size-contrast illusions deceive the eye but not the hand. Curr Biol 5:679–685

    Article  CAS  PubMed  Google Scholar 

  • Baroni G, Ferrigno G, Rabuffetti M, Pedotti A, Massion J (1999) Long-term adaptation of postural control in microgravity. Exp Brain Res 128:410–416

    Article  CAS  PubMed  Google Scholar 

  • Berger M, Mescheriakov S, Molokanova E, Lechner-Steinleitner S, Seguer N, Kozlovskaya I (1997) Pointing arm movements in short- and long-term spaceflights. Aviat Space Environ Med 68:781–787

    CAS  PubMed  Google Scholar 

  • Bloomberg J, Bock O (2012) Adaptation to weightlessness. In: Seel N (ed) Encyclopedia of the sciences of learning. Springer, Berlin, pp 102–103

    Google Scholar 

  • Bock O (1998) Problems of sensorimotor coordination in weightlessness. Brain Res Rev 28:155–160

    Article  CAS  PubMed  Google Scholar 

  • Bock O, Züll A (2013) Characteristics of grasping movements in a laboratory and in an everyday-like context. Hum Mov Sci 32:249–256

    Article  PubMed  Google Scholar 

  • Bock O, Howard IP, Money KE, Arnold KE (1992) Accuracy of aimed arm movements in changed gravity. Aviat Space Environ Med 63:994–998

    CAS  PubMed  Google Scholar 

  • Bock O, Fowler B, Comfort D (2001) Human sensorimotor coordination during spaceflight. An analysis of pointing and tracking responses during the “Neurolab” space shuttle mission. Aviat Space Environ Med 72:877–883

    CAS  PubMed  Google Scholar 

  • Bock O, Fowler B, Jüngling S, Comfort D (2003) Visual-motor coordination during spaceflight. In: Buckey JC, Homick JL (eds) The Neurolab space mission: neuroscience res in space. NASA, Houston, TX, pp 83–89

    Google Scholar 

  • Bock O, Weigelt C, Bloomberg JJ (2010) Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study. Aviat Space Environ Med 81:819–824

    Article  PubMed  Google Scholar 

  • Bock O, Schott N, Papaxanthis C (2015) Motor imagery: lessons learned in movement science might be applicable for spaceflight. Front Syst Neurosci 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Bridgeman B, Lewis S, Heit G, Nagle M (1989) Relation between cognitive and motor-oriented systems of visual position perception. J Exp Psychol 5:692–700

    Google Scholar 

  • Burton AW, Miller DE (1998) Movement skill assessment. Human Kinetics, Champaign, IL

    Google Scholar 

  • Campbell W, Buckey JC Jr, Kirkpatrick AW (2005) Animal surgery during spaceflight on the Neurolab shuttle mission. Aviat Space Environ Med 76:589–593

    PubMed  Google Scholar 

  • Cheron G, Leroy A, Palmero-Soler E, de Saedeleer C, Bengoetxea A, Cebolla A, Vidal M, Dan B, Berthoz A, McIntyre J (2014) Gravity influences top-down signals in visual processing. PLoS One 9:e82371

    Article  PubMed  PubMed Central  Google Scholar 

  • Clément G, Lestienne F (1988) Adaptive modifications of postural attitude in conditions of weightlessness. Exp Brain Res 72:381–389

    Article  PubMed  Google Scholar 

  • Clément G, Ngo-Anh JT (2013) Space physiology II: adaptation of the central nervous system to space flight—past, current, and future studies. Eur J Appl Physiol 113:1655–1672

    Article  PubMed  Google Scholar 

  • Clément G, Gurfinkel VS, Lestienne F, Lipshits MI, Popov KE (1984) Adaptation of postural control to weightlessness. Exp Brain Res 57:61–72

    Article  PubMed  Google Scholar 

  • Clément G, Gurfinkel VS, Lestienne F, Lipshits MI, Popov KE (1985) Changes of posture during transient perturbations in microgravity. Aviat Space Environ Med 56:666–671

    PubMed  Google Scholar 

  • Clément G, Lathan C, Lockerd A (2008) Perception of depth in microgravity during parabolic flight. Acta Astronaut 63:828–832

    Article  Google Scholar 

  • Clément G, Skinner A, Richard G, Lathan C (2012) Geometric illusions in astronauts during long-duration spaceflight. Neuroreport 23:894–899

    Article  PubMed  Google Scholar 

  • Dalecki M, Bock O, Schulze B (2012) Cognitive impairment during 5 m water immersion. J Appl Physiol 113:1075–1081

    Article  PubMed  Google Scholar 

  • de Witt JK, Cromwell RL, Ploutz-Snyder LL (2014) Biomechanics of treadmill locomotion on the International Space Station. NASA Human Research Program Investigators Workshop, Galveston, TX

    Google Scholar 

  • Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178

    Article  PubMed  Google Scholar 

  • Driskell J, Copper C, Moran A (1994) Does mental practice enhance performance? J Appl Psychol 79:481–492

    Article  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Article  CAS  PubMed  Google Scholar 

  • Fowler B, Comfort D, Bock O (2000) A Review of cognitive and perceptual-motor performance in space. Aviat Space Environ Med 71:A66–A68

    CAS  PubMed  Google Scholar 

  • Friederici AD, Levelt WJM (1990) Spatial reference in weightlessness. Perceptual factors and mental representations. Percept Psychophys 47:253–266

    Article  CAS  PubMed  Google Scholar 

  • Gentili R, Han CE, Schweighofer N, Papaxanthis C (2010) Motor learning without doing: trial-by-trial improvement in motor performance during mental training. J Neurophysiol 104:774–783

    Article  PubMed  Google Scholar 

  • Glasauer S, Mittelstaedt H (1992) Determinants of orientation in microgravity. IAA Man Space Symp 27:1–9

    CAS  Google Scholar 

  • Glasauer S, Mittelstaedt H (1998) Perception of spatial orientation in microgravity. Brain Res Rev 28:185–193

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA, Meenan JP, Bulthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathway for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610

    Article  CAS  PubMed  Google Scholar 

  • Harm DL, Parker DE (1993) Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training. J Vestib Res 3:297–305

    CAS  PubMed  Google Scholar 

  • Hermsdörfer J, Marquardt C, Philipp J, Zierdt A, Nowak D, Glasauer S, Mai N (2000) Moving weightless objects. Grip force control during microgravity. Exp Brain Res 132:52–64

    Article  PubMed  Google Scholar 

  • Holmes PS, Collins DJ (2001) The PETTLEP approach to motor imagery: a functional equivalence model for sport psychologists. J Appl Sport Psychol 13:60–83

    Article  Google Scholar 

  • Human Integration Design Handbook (2010) NASA-SP-2010-3407. Washington, DC

    Google Scholar 

  • Immenroth M, Bürger T, Brenner J, Nagelschmidt M, Eberspächer H, Troidl H (2007) Mental training in surgical education: a randomized controlled trial. Ann Surg 245:385

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson PL, Lafleur MF, Malouin F, Richards C, Doyon J (2001) Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil 82:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109

    Article  CAS  PubMed  Google Scholar 

  • Kornilova LN (1997) Orientation illusions in spaceflight. J Vestib Res 7:429–439

    Article  CAS  PubMed  Google Scholar 

  • Lackner JR, DiZio P (1993) Multisensory, cognitive, and motor influence on human spatial orientation in weightlessness. J Vestib Res 3:361–372

    CAS  PubMed  Google Scholar 

  • Lackner JR, DiZio P (1996) Motor function in microgravity: movement in weightlessness. Curr Opin Neurobiol 6:744–750

    Article  CAS  PubMed  Google Scholar 

  • Lackner JR, Graybiel A (1979) Parabolic flight: loss of sense of orientation. Science 206:1105–1108

    Article  CAS  PubMed  Google Scholar 

  • Lacourse MG, Orr ELR, Cramer SC, Cohen MJ (2005) Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage 27:505–519

    Article  PubMed  Google Scholar 

  • Lipshits M, McIntyre J (1999) Gravity affects the preferred vertical and horizontal in visual perception of orientation. Neuroreport 10:1085–1089

    Article  CAS  PubMed  Google Scholar 

  • Manzey D, Lorenz B, Schiewe A, Finell G, Thiele G (1995) Dual-task performance in space. Results from a single-case study during a short-term space mission. Hum Factors 37:667–681

    Article  CAS  PubMed  Google Scholar 

  • McNay E, Willingham D (1998) Deficit in learning of a motor skill requiring strategy, but not of perceptual motor recalibration, with aging. Learn Mem 4:411–420

    Article  CAS  PubMed  Google Scholar 

  • Miall RC, Wolpert D (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends NeuroSci 6:414–417

    Article  Google Scholar 

  • Munzert J, Lorey B, Zentgraf K (2009) Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev 60:306–326

    Article  PubMed  Google Scholar 

  • Navon D, Gopher D (1979) On the economy of the human-processing system. Psychol Rev 86:214–255

    Article  Google Scholar 

  • Nowak DA, Hermsdörfer J, Philipp J, Marquardt C, Glasauer S, Mai N (2001) Effects of changing gravity on anticipatory grip force control during point-to-point movements of a hand-held object. Motor Control 5:231–253

    CAS  PubMed  Google Scholar 

  • Oman C (2007) Spatial orientation and navigation in microgravity. In: Mast F, Jäncke L (eds) Spatial processing in navigation, imagery and perception. Springer, Berlin, pp 369–387

    Google Scholar 

  • Oman CM, Lichtenberg BK, Money KE, McCoy RK (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. 4. Space motion sickness: symptoms, stimuli, and predictability. Exp Brain Res 64:316–334

    Article  CAS  PubMed  Google Scholar 

  • Panait L, Merrell RC, Rafiq A, Dudrick SJ, Broderick TJ (2006) Virtual reality laparoscopic skill assessment in microgravity. J Surg Res 136:198–203

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Wassermann EM, Grafman J, Hallett M (1996) The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp Brain Res 107:479–485

    Article  CAS  PubMed  Google Scholar 

  • Rafiq A, Broderick TJ, Williams DCR, Jones JA, Merrell RC (2005) Assessment of simulated surgical skills in parabolic microgravity. Aviat Space Environ Med 76:385–391

    PubMed  Google Scholar 

  • Ranganathan VK, Siemionow V, Liu JZ, Sahgal V, Yue GH (2004) From mental power to muscle power—gaining strength by using the mind. Neuropsychologia 42:944–956

    Article  PubMed  Google Scholar 

  • Redding GM, Wallace B (1996) Adaptive spatial alignment and strategic perceptual-motor control. J Exp Psychol Hum Percept Perform 22:379–394

    Article  CAS  PubMed  Google Scholar 

  • Robert G, Hockey J (1997) Compensatory control in the regulation of human performance under stress and high workload: a cognitive-energetical framework. Biol Psychol 45:73–93

    Article  Google Scholar 

  • Schmitt HH, Reid DJ (1985) Anecdotal information on space adaptation syndrome. NASA Johnson Space Center, Houston, TX

    Google Scholar 

  • Schneider S, Brümmer V, Carnahan H, Kleinert J, Piacentini MF, Meeusen R, Strüder HK (2010) Exercise as a countermeasure to psycho-physiological deconditioning during long-term confinement. Behav Brain Res 211:208–214

    Article  PubMed  Google Scholar 

  • Steinberg F, Bock O (2012) Influence of cognitive functions and behavioral context on grasping kinematics. Exp Brain Res 225:387–397

    Article  PubMed  Google Scholar 

  • Steinberg F, Bock O (2013) Context dependence of manual grasping movements in near weightlessness. Aviat Space Environ Med 84:467–472

    Article  PubMed  Google Scholar 

  • Tafforin C, Campan R (1994) Ethological experiments on human orientation behavior within a three-dimensional space-in microgravity. Adv Space Res 14:415–418

    Article  CAS  PubMed  Google Scholar 

  • Tafforin C, Thon B, Guell A, Campan R (1989) Astronaut behavior in an orbital flight situation. Preliminary ethological observations. Aviat Space Environ Med 60:949–956

    CAS  PubMed  Google Scholar 

  • Thornton WE, Hoffler GW, Rummel JA (1977) Anthropometric changes and fluid shifts. In: Johnson RS, Dietlein LF (eds) Biomedical results from Skylab. NASA SP-377

    Google Scholar 

  • Vidal M, Amorim M, Berthoz A (2004) Navigating in a virtual three-dimensional maze: how do egocentric and allocentric reference frames interact? Cogn Brain Res 19:244–258

    Article  Google Scholar 

  • Villard E, Garcia-Moreno FT, Peter N, Clément G (2005) Geometric visual illusions in microgravity during parabolic flight. Neuroreport 16:1395–1398

    Article  PubMed  Google Scholar 

  • Watt DGD (1997) Pointing at memorized targets during prolonged microgravity. Aviat Space Environ Med 68:99–103

    CAS  PubMed  Google Scholar 

  • White RJ, Averner M (2001) Humans in space. Nature 409:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Wolpert D, Ghahramani Z, Jordan M (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Article  CAS  PubMed  Google Scholar 

  • Yue G, Cole KJ (1992) Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 67:1114–1123

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otmar Bock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Bock, O. (2016). Motor Skills. In: Schneider, S. (eds) Exercise in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-29571-8_1

Download citation

Publish with us

Policies and ethics