• Oliver Nakoinz
  • Daniel Knitter
Part of the Quantitative Archaeology and Archaeological Modelling book series (QAAM)


Geographical and social networks form a broad and fashionable yet important field of research in archaeology and geography. Networks are tightly connected to the mathematical graph theory. This chapter starts by discussing the concepts of network and transportation systems, before we focus on transportation networks. On a local, level pathways are constructed using least cost path analysis and reconstructed using pattern recognition. The combination of the constructed theoretical and reconstructed empirical model serves not only to set up an integrative model of the transport system but also to establish knowledge about social behaviour. The regional level does not deal with the exact location of the pathways but rather with the connection between places. Methods from graph theory are used as both empirical and theoretical models of the structure of transport system. Finally, the characterisation of both networks and elements in networks is addressed, serving as a basis for the comparison of networks.


Network Transportation Neighbourhood graph Least-cost-path analysis Centrality Axes of orientation Density ridge approach 


  1. 1.
    Barthélemy, M. (2014). Discussion: Social and spatial networks. Nouvelles de l’archéologie, 135, 51–61.CrossRefGoogle Scholar
  2. 2.
    Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2008). Applied spatial data analysis with R. New York: Springer.Google Scholar
  3. 3.
    Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92, 1170–1182.CrossRefGoogle Scholar
  4. 4.
    Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27, 55–71.CrossRefGoogle Scholar
  5. 5.
    Bourgeois, Q. (2013). Monuments on the Horizon. The formation of the barrow landscape throughout the 3rd and 2nd millennium BC. Leiden: Sidestone Press.Google Scholar
  6. 6.
    Brandes, U., Robins, G., McCranie, A., & Wasserman, S. (2013). What is network science? Network Science, 1, 1–15.CrossRefGoogle Scholar
  7. 7.
    Brughmans, T. (2010). Connecting the dots: Towards archaeological network analysis. Oxford Journal of Archaeology, 29, 277–303.CrossRefGoogle Scholar
  8. 8.
    Brughmans, T. (2013). Thinking through networks: A review of formal network methods in archaeology. Journal of Archaeological Method and Theory, 20, 623–662.CrossRefGoogle Scholar
  9. 9.
    Brughmans, T., Keay, S., & Earl, G. P. (2013). Understanding inter-settlement visibility in Iron Age and Roman Southern Spain with exponential random graph models for visibility networks. Journal of Archaeological Method and Theory, 22, 1–32.Google Scholar
  10. 10.
    Chen, G., Gould, R. J., Jacobson, M. S., Schelp, R. H., & West, D. A. (1992). A characterization of influence graphs of a prescribed graph. Vishwa International Journal of Graph Theory, 1, 77–81.Google Scholar
  11. 11.
    Collar, A., Coward, F., Brughmans, T., & Mills, B. J. (2015). Networks in archaeology: Phenomena, abstraction, representation. Journal of Archaeological Method and Theory, 22, 1–32.CrossRefGoogle Scholar
  12. 12.
    Delaunay, B. N. (1934). Sur la sphère vide. Bulletin of the Academy of Sciences of the USSR, 7(6), 793–800.Google Scholar
  13. 13.
    Diestel, R. (2000). Graph theory. New York: Springer.Google Scholar
  14. 14.
    van Etten, J. (2015). R Package gdistance: Distances and routes on geographical grids. Journal of Statistical Software, 10, 1–22.CrossRefGoogle Scholar
  15. 15.
    Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.CrossRefGoogle Scholar
  16. 16.
    Freeman, L. C. (1978/1979). Centrality in social networks - conceptual clarification. Social Networks, 1, 215–239.Google Scholar
  17. 17.
    Fulminante, F. (2014). The network approach: Tool or paradigm? Archaeological Review from Cambridge, 29, 167–178.Google Scholar
  18. 18.
    Granovetter, M. S. (1973). The strength of weak ties. The American Journal of Sociology, 78, 1360–1380.CrossRefGoogle Scholar
  19. 19.
    Haggett, P. (1965). Locational analysis in human geography. London: Arnold.Google Scholar
  20. 20.
    Haggett, P. (1970). Network models in geography. In R. J. Chorley & P. Haggett (Eds.), Integrated models in geography (pp. 609–668). London: Methuen.Google Scholar
  21. 21.
    Haggett, P., & Chorley, R. J. (1969). Network analysis in geography. London: Arnold.Google Scholar
  22. 22.
    Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. University of California, Riverside, Department of Sociology, Riverside, CA: Digitalpublikation.
  23. 23.
    Helbing, D., Keltsch, J., & Molnár, P. (1997). Modelling the evolution of human trail systems. Nature, 388, 47–50.CrossRefGoogle Scholar
  24. 24.
    Herzog, I. (2013). Theory and practice of cost functions. In F. Contreras, M. Farjas & F. J. Melero (Eds.), Fusion of cultures. Proceedings of the 38th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Granada, Spain, April 2010. BAR International Series, Vol. 2494. (pp. 375–382).Google Scholar
  25. 25.
    Herzog, I. (2013). Potential and limits of optimal path analysis. In A. Bevan & M. Lake (Eds.), Computational approaches to archaeological spaces (pp. 179–211). Walnut Creek, CA: Left Coast Press.Google Scholar
  26. 26.
    Herzog, I. (2014). Least-cost paths - some methodological issues. Internet Archaeology, 36.
  27. 27.
    Knappett, C. (2011). An archaeology of interaction: Network perspectives on material culture and society. Oxford: Oxford University Press.CrossRefGoogle Scholar
  28. 28.
    Knappett, C. (Ed.). (2013). Network analysis in archaeology: New approaches to regional interaction. Oxford: Oxford University PressGoogle Scholar
  29. 29.
    Koschützki, D., Lehmann, K. A., Peeters, L., Richter, S., Tenfelde-Podehl, D., & Zlotowski, O. (2005). Centrality indices. In U. Brandes & T. Erlebach (Eds.), Network analysis (pp. 16–61). Berlin: Springer.CrossRefGoogle Scholar
  30. 30.
    Koschützki, D., Lehmann, K. A., Tenfelde-Podehl D., & Zlotowski, O. (2005). Advanced centrality concepts. In U. Brandes & Erlebach, T. (Eds.), Network analysis (pp. 83–111). Berlin: Springer.CrossRefGoogle Scholar
  31. 31.
    Llobera, M. (2000). Understanding movement: A pilot model towards the sociology of movement. In G. Lock (Ed.), Beyond the Map. Archaeology and Spatial Technologies (pp. 65–84). Amsterdam, Berlin, Oxford, Tokyo, Washington DC: IOS Press.Google Scholar
  32. 32.
    Michael, T. S., & Quint, T. (1999). Sphere of influence graphs in general metric spaces. Mathematical and Computer Modelling, 29, 45–53.CrossRefGoogle Scholar
  33. 33.
    Moreno, J. L. (1934). Who shall survive? Washington, DC: Nervous and Mental Disease Publishing Company.Google Scholar
  34. 34.
    Müller, S. (1904). Vei og Bygd i Sten- og Bronzealdern. Aarbøger for Nordisk oldkyndighed og historie, 1904, 1–64.Google Scholar
  35. 35.
    Müller, U. (2012). Networks of towns’ networks of periphery? Some relations between the North European Medieval town and its hinterland. In S. Brather, U. Müller & H. Steuer (Eds.), Raumbildung durch Netzwerke? Der Ostseeraum zwischen Wikingerzeit un Spaetmittelalter aus archaeologischer und geschichtswissenschaftlicher Perspektive (pp. 55–78). Bonn: Dr. Rudolf Habelt GmbH.Google Scholar
  36. 36.
    Nakoinz, O. (2012). Ausgewählte Parameter der Lage von Wegen und Monumenten als Proxy für soziale Prozesse prähistorischer Gesellschaften. In M. Hinz & J. Müller (Eds.), Siedlung, Grabenwerk, Großsteingrab. Studien zu Gesellschaft, Wirtschaft und Umwelt der Trichterbechergruppen im nördlichen Mitteleuropa: Vol. 2. Frühe Monumentalität und soziale Differenzierung (pp. 445–456). Bonn: Habelt.Google Scholar
  37. 37.
    Nakoinz, O. (2013). Archäologische Kulturgeographie der ältereisenzeitlichen Zentralorte Südwestdeutschlands: Vol. 224. Universitätsforschung zur Prähistorischen Archäologie. Bonn: Habelt.Google Scholar
  38. 38.
    Newman, M. E. J. (2010). Networks: An introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  39. 39.
    Nuhn, H., & Hesse, M. (2006). Verkehrsgeographie. Paderborn: Schöningh.Google Scholar
  40. 40.
    Ortúzar, J. de D., & Willumsen, L. G. (2011). Modelling transport. Chichester: Wiley.Google Scholar
  41. 41.
    Peuker, T. K., & Douglas, D. H. (1975). Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer Graphics and Image Processing, 4, 375–387.CrossRefGoogle Scholar
  42. 42.
    Prömel, H. J., & Steger, S. (2002). The Steiner tree problem. A tour through graphs, algorithms, and complexity. Braunschweig: Vieweg.Google Scholar
  43. 43.
    Ramachandran, S., & Rosenberg, N. A. (2011). A test of the influence of continental axes of orientation on pattern sof human gene flow. American Journal of Physical Anthropology, 146, 515–529.CrossRefGoogle Scholar
  44. 44.
    Scott, J. (1991). Social network analysis: A handbook. London: Sage.Google Scholar
  45. 45.
    Sindbæk, S. M. (2007). Networks and nodal points: The emergence of towns in early viking age Scandinavia. Antiquity, 81, 119–132.CrossRefGoogle Scholar
  46. 46.
    Taaffe, E. J., Gauthier, H. L., & O’Kelly, M. E. (1973). Geography of transportation. Upper Saddle River: Prentice Hall.Google Scholar
  47. 47.
    Toussaint, G. T. (1980). Pattern recognition and geometric complexity. In Proceedings of the 5th International Conference on Pattern Recognition (pp. 1324–1347). Miami Beach, FL.Google Scholar
  48. 48.
    Toussaint, G. T. (1980). The relative neighborhood graph of a finite planar set. Pattern Recognition, 12, 261–268.CrossRefGoogle Scholar
  49. 49.
    Toussaint, G. T. (1981). Computational geometric problems in pattern recognition. In J. Kittler (Ed.), Pattern recognition theory and applications (pp. 73–91). Oxford: NATO Advanced Study Institute, Oxford University Press.Google Scholar
  50. 50.
    Toussaint, G. T. (2014). The sphere of influence graph: Theory and applications. International Journal of Information Technology & Computer Science, 14, 2091–1610.Google Scholar
  51. 51.
    Tremblay-Cormier, L. (2014). Le mobilier métallique méditerranéen comme témoin des échanges à longue distance entre Rhin et Rhôe, du 10ème au 5ème siècle avant notre ère. In P. Barral, J.-P. Guillaumet, M.-J. Roulière-Lambert, M. Saracino & D. Vitali (Eds.), Les Celtes en Italie, May 2012 (pp. 297–309). Verone, Italy: Société archéologique de l’Est.Google Scholar
  52. 52.
    Urquhart, R. B. (1980). Algorithms for computation of relative neighborhood graph. Electronics Letters, 16, 556–557.CrossRefGoogle Scholar
  53. 53.
    Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press, pp. 58–143.CrossRefGoogle Scholar
  54. 54.
    White, D. A., & Surface-Evans, S. (Eds.). (2012). Lest cost analysis of social landscapes. Ann Arbor: The University of Uta Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Oliver Nakoinz
    • 1
  • Daniel Knitter
    • 2
  1. 1.University of KielKielGermany
  2. 2.Excellence Cluster TopoiFreie UniversitätBerlinGermany

Personalised recommendations