Advertisement

Point Pattern

  • Oliver Nakoinz
  • Daniel Knitter
Chapter
  • 720 Downloads
Part of the Quantitative Archaeology and Archaeological Modelling book series (QAAM)

Abstract

In archaeology and geography, many data are available as sets of points. Hence, the analysis of point patterns is an important technique in both disciplines. To start with point processes are mentioned, as predefined rules of the formation of point patterns and hence theoretical models. First-order properties of point processes involve factors of point locations, which do not depend on other points. This part connects to regression and predictive modelling. Second-order properties deal with the dependence of the location on other points. Tests on complete spatial randomness (CSR) compare parameters of a random point distribution with the parameters of an empirical point distribution to establish whether CSR can be deduced. G-, F- and Ripley’s K-function are applied. These functions allow distinguishing regular point patterns, random point patterns and clustered point patterns. In the case of clustered point patterns, an attraction between the points is assumed. A new point prefers a location close to other points. In the case of regular patterns, a rejection is assumed where points tend to avoid other points. We present a systematisation of different functions of second-order point pattern analysis. For third-order properties, it is assumed that the location between points depends on the relationship of a triple of points.

Keywords

Point processes Point pattern analysis Complete spatial randomness First-order properties Second-order properties Spatial dependencies 

References

  1. 1.
    Baddeley, A. (2008). Analysing spatial point patterns in R. Canberra: Csiro.Google Scholar
  2. 2.
    Baddeley, A., & Turner, R. (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software, 12, 1–42.CrossRefGoogle Scholar
  3. 3.
    Baddeley, A., Turner, R., Mateu, J., & Bevan, A. (2013). Hybrids of Gibbs point process models and their implementation. Journal of Statistical Software, 55, 1–43.CrossRefGoogle Scholar
  4. 4.
    Baddeley, A. J., Møller, J., & Waagepetersen, R. (2000). Non- and semiparametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54, 329–350.CrossRefGoogle Scholar
  5. 5.
    Besag, J. (1974). Spatial interaction and statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B, 36, 192–236.Google Scholar
  6. 6.
    Besag, J. (1975). Statistical analysis of non-lattice data. The Statistican, 24, 179–195.CrossRefGoogle Scholar
  7. 7.
    Bevan, A. (2013). Models of settlement hierarchy based on partial evidence. Journal of Archaeological Science, 40, 2415–2427.CrossRefGoogle Scholar
  8. 8.
    Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2008). Applied spatial data analysis with R. New York: Springer.Google Scholar
  9. 9.
    Brundsdon, C., & Comber, L. (2015). An introduction to R for spatial analysis and mapping. Los Angeles: Sage.Google Scholar
  10. 10.
    Diggle, P. J. (2013). Statistical analysis of spatial and spatio-temporal point patterns, 3rd edn. Boca Raton: Chapman and Hall/CRC.Google Scholar
  11. 11.
    Gabriel, E., & Diggle, P. (2009). Second-order analysis of inhomogeneous spatio-temporal point process data. Statistica Neerlandica, 63, 43–51.CrossRefGoogle Scholar
  12. 12.
    Getis, A., & Boots, B. (1978). Models of spatial processes. Cambridge: Cambridge University Press.Google Scholar
  13. 13.
    Hubbard, R., & Lindsay R. M. (2008). Why P values are not a useful measure of evidence in statistical significance testing. Theory & Psychology, 18, 69–88.CrossRefGoogle Scholar
  14. 14.
    Illian, J., Penttinen, A., Stoxyan, H., & Stoyan, D. (2008). Statistical analysis and modellig of spatial point patterns. Chichester: Wiley.Google Scholar
  15. 15.
    Knitter, D., Nakoinz, O., Del Fabbro, R., Kohlmeyer, K., Schütt, B., & Meyer, M. (2014). The centrality of aleppo and its environs. eTopoi, 3, 107–127.Google Scholar
  16. 16.
    Knitter, D., & Nakoinz, O. (in press): Point pattern analysis as tool for digital geoarchaeology – A case study of megalithic graves in Schleswig-Holstein, Germany. In C. Siart, M. Forbirger & O. Bubenzer (Eds.), Digital geoarchaeology. New techniques for interdisciplinary human-environmental research, Springer. Google Scholar
  17. 17.
    Mayer, J., Schmidt, V., & Schweiggert, F. (2004). A unified framework for spatial stochastic models. Simulation Modelling Practice and Theory, 12, 307–326.CrossRefGoogle Scholar
  18. 18.
    Møller, J., & Waagepetersen, R. P. (2004). Statistical inverence and simulation for spatial point processes. Boca Raton: Chapman & Hall/CRC.Google Scholar
  19. 19.
    Nakoinz, O. (2013). Archäologische Kulturgeographie der ältereisenzeitlichen Zentralorte Südwestdeutschlands. Universitätsforschung zur prähistorischen Archäologie, vol. 224. Bonn: Habelt.Google Scholar
  20. 20.
    Orton, C. (2004). Point pattern analysis revisted. Archaeologia e Calcolatori, 15, 299–315.Google Scholar
  21. 21.
    O’Sullivan, D., & Perry, G. L. W. (2013). Spatial simulation: exploring pattern and process. Chichester, West Sussex: John Wiley & Sons Inc.CrossRefGoogle Scholar
  22. 22.
    Ripley, B. D. (1977). Modelling spatial patterns. Journal of Royal Statistical Society, B39, 172–212.Google Scholar
  23. 23.
    Ripley, B. D. (1981). Spatial statistics. New York: Springer.CrossRefGoogle Scholar
  24. 24.
    Thompson, B. (2006). A critique of p-values. International Statistical Review, 74, 1–14.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Oliver Nakoinz
    • 1
  • Daniel Knitter
    • 2
  1. 1.University of KielKielGermany
  2. 2.Excellence Cluster TopoiFreie UniversitätBerlinGermany

Personalised recommendations