Advertisement

Theory of Modelling

  • Oliver Nakoinz
  • Daniel Knitter
Chapter
  • 714 Downloads
Part of the Quantitative Archaeology and Archaeological Modelling book series (QAAM)

Abstract

This chapter is dedicated to the term ‘model’ which is explored in the first part. The chapter presents different definitions and characterisations of the term ‘model’ and aims to provide readers with a deeper understanding of differences and similarities in the various concepts of models, as well as their practical applications. A brief discussion of some classifications of models introduces the reader to the most important distinctions in the modelling terminology. Among these classifications, the distinction between theoretical and empirical models plays a dominant role and is pivotal for understanding the methodological chapters. In addition, we present the SQM classification and address the development and reduction of complexity in models. Different purposes and benefits of models are described and may serve as a starting point for describing modelling applications. In order to have practical rules of thumb for the usage of models some modelling directions are given. Finally, examples from archaeology and geography complete this conceptual chapter on modelling.

Keywords

model modelling model theory complexity theoretical models empirical models 

References

  1. 1.
    Ackland, G. J., Signitzer, M., Stratford, K., & Cohen, M. (2007). Cultural hitchhiking on the wave of advance of beneficial technologies. Proceedings of the National Academy of Sciences, 104, 8714–8719.Google Scholar
  2. 2.
    Ammerman, A. J., & Cavalli-Sforza, L. L. (1973). A population model for the diffusion of early farming in Europe. In C. Renfrew (Ed.), The explanation of culture change. London: Duckworth.Google Scholar
  3. 3.
    Ammerman, A. J., & Cavalli-Sforza, L. L. (1979). The wave of advance model for the spread of agriculture in Europe. In C. Renfrew, & K. L. Cooke (Eds.), Transformations - mathematical approaches to culture change (pp. 275–293). New York: Academic.Google Scholar
  4. 4.
    Baggaley, A. W., Sarson, G. R., Shukurov, A., Boys, R. J., & Golightly, A. (2012). Bayesian inference for a wavefront model of the Neolithisation of Europe. Physics Review, E 86, 016105.CrossRefGoogle Scholar
  5. 5.
    Balzer, W. (2009). Die Wissenschaft und ihre Methoden. Freiburg: Karl Alber.Google Scholar
  6. 6.
    Birdsell, J. B. (1953). Some environmental and cultural factors influencing the structuring of Australian Aboriginal populations. The American Naturalist, 87/834, 171–207.Google Scholar
  7. 7.
    Childe, V. G. (1925). The dawn of European civilization. London: Kegan Paul.Google Scholar
  8. 8.
    Chorley, R., & Haggett, P. (1967). Models in geography. London: Edward Arnold.Google Scholar
  9. 9.
    Clarke, D. L. (Ed.). (1972). Models in archaeology. London: Methuen.Google Scholar
  10. 10.
    Clarke, K. C. (2013). Cellular automata and agent-based models. Handbook of regional science, (pp. 1217–1233). Springer Berlin Heidelberg.Google Scholar
  11. 11.
    Christaller, W. (1933). Die Zentralen Orte in Süddeutschland. Jena: Fischer.Google Scholar
  12. 12.
    Daudé, E. (2004). Apports de la simulation multi-agents à l’étude des processus de diffusion, Cybergeo. Revue européenne de géographie, 255. http://cybergeo.revues.org/3835; doi: 10.4000/cybergeo.3835
  13. 13.
    Diachenko, A, & Menotti, F. (2012). The gravity model: Monitoring the formation and development of the Tripolye culture giant-settlements in Ukraine. Journal of Archaeological Science, 39, 2810–2817.CrossRefGoogle Scholar
  14. 14.
    Diachenko, A., & Zubrow, E. B. W. (2015). Stabilization points in carrying capacity: Population growth and migrations. Journal of Neolithic Archaeology, 17, 1–15.Google Scholar
  15. 15.
    Fisher, R.A. (1937). The advance of advantageous genes. Annals of Eugenics, 7, 335–369.Google Scholar
  16. 16.
    Fonstad, M. A. (2006). Cellular automata as analysis and synthesis engines at the geomorphology/ecology interface. Geomorphology, 77, 217–234.CrossRefGoogle Scholar
  17. 17.
    Frigg, R., & Hartmann, S. (2012). Models in science. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2012 ed.). Stanford, CA: The Metaphysics Research Lab, Center for the Study of Language and Information (CSLI), Stanford University. http://plato.stanford.edu/archives/fall2012/entries/models-science/
  18. 18.
    Gardner, M. (1970). Mathematical games – The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223, 120–123.CrossRefGoogle Scholar
  19. 19.
    Hägerstrand, T. (1952). The propagation of innovation waves. Lund studies in geography (Vol. B4). Lund: Lund University.Google Scholar
  20. 20.
    Hägerstrand, T. (1967). Innovation diffusion as a spatial process. Chicago: University of Chicago Press.Google Scholar
  21. 21.
    Haggett, P. (1965). Locational analysis in human geography. London: Arnold.Google Scholar
  22. 22.
    Hartz, S., Lübke, H., & Terberger, T. (2007). From fish and seal to sheep and cattle: New research into the process of neolithisation in northern Germany. Proceedings of the British Academy, 144, 567–594.Google Scholar
  23. 23.
    Hofmann, A. W. (1865). On the combining power of atoms. Proceedings of the Royal Institution of Great Britain, 4, 401–430.Google Scholar
  24. 24.
    Intergovernmental Panel on Climate Change 2013: The Physical Science Basis (2013). IPCC Working Group I Contribution to AR5. Cambridge: Cambridge University Press.Google Scholar
  25. 25.
    Kolmogoroff, I. P., & Piscounoff, N. (1937). Etude de léquation de la diffusion avec croissance de la quantité de matière et son application a un probléme biologique. Bulletin de lUniversité détat à Moscou Série Internationale Section A Mathématiques et Mécanique, 1, 1–25.Google Scholar
  26. 26.
    Kossinna, G. (1911). Die Herkunft der Germanen. Würzburg: Zur Methode der Siedlungsarchäologie.Google Scholar
  27. 27.
    Kralemann, B., & Lattmann, C. (2012). Models as icons: Modeling models in the semiotic framework of Peirce’s theory of signs. Synthese, 190, 3397–3420.CrossRefGoogle Scholar
  28. 28.
    Kralemann, B., & Lattmann, C. (2013). The semantics of models: A semiotic philosophy of science approach. In K.-D. Schewe, & B. Thalheim, (Eds.), Semantics in data and knowledge bases. Lecture notes in computer science (Vol. 7693, pp. 50–69). New York: Springer.Google Scholar
  29. 29.
    Latif, M. (2015). Klimamodelle. In B. Thalheim, & I. Nissen (Eds.), Wissenschaft und Kunst der Modellierung. Kieler Zugang zur Definition, Nutzung und Zukunft. Philosophische Analysen (Vol. 64, pp. 281–306). Berlin: De Gruyter.Google Scholar
  30. 30.
    Lemmen, C., Gronenborn, D., & Wirtz, K. W. (2011). A simulation of the Neolithic transition in Western Eurasia. Journal of Archaeological Science, 38, 3459–3470.CrossRefGoogle Scholar
  31. 31.
    Lotka, A. J. (1925). Elements of physical biology. Baltimore: Waverly Press.Google Scholar
  32. 32.
    Lüning, J. (1972). Zum Kulturbegriff im Neolithikum. Prähistorische Zeitschrift, 47, 145–173.CrossRefGoogle Scholar
  33. 33.
    Mahr, B. (2004). Wissen in Modellen. KIT Report 150. Berlin: KIT.Google Scholar
  34. 34.
    Mahr, B. (2008). Ein Modell des Modellseins. Ein Beitrag zur Aufklärung des Modellbegriffs. In U. Dirks, & E. Knobloch (Eds.), Modelle (pp. 187–218). Lang, Frankfurt am Main.Google Scholar
  35. 35.
    Malthus, T. R. (1798). An essay on the principle of population as it affects the future improvement of society with remarks on the speculations of Mr. Godwin, M. Condorcet and other writers. London: Johnson.Google Scholar
  36. 36.
    Mayerle, R., & Zielke, W. (2005). Predictions of medium scale morphodynamics: Promorph project overview. Die Kueste, 69, 1–23.Google Scholar
  37. 37.
    Motesharrei, S., Rivas, J., & Kalnay, E. (2014). Human and nature dynamics (HANDY): Modeling inequality and use of resources in the collapse or sustainability of societies. Ecological Economics, 101, 90–102.CrossRefGoogle Scholar
  38. 38.
    Nakoinz, O., & Hinz, M. (2015). Modelle in der Archäologie. In B. Thalheim, & I. Nissen (Eds.), Wissenschaft und Kunst der Modellierung. Kieler Zugang zur Definition, Nutzung und Zukunft. Philosophische Analysen (Vol. 64, pp. 281–306). Berlin: De Gruyter.Google Scholar
  39. 39.
    Newton, I. (1687). Philosophiae Naturalis Principia Mathematica. London: Societatis Regia.Google Scholar
  40. 40.
    Parker, D. C., Manson, S. M, Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the Association of American Geographers, 93, 314–337.CrossRefGoogle Scholar
  41. 41.
    Petrie, F., & W. M. (1899). Sequences in prehistoric remains. The Journal of the Anthropological Institute of Great Britain and Ireland, 29, 295–301.Google Scholar
  42. 42.
    Piazza, L., Lummen, T. T. A., Quin, E., Murooka, Y. Reed, B. W., Barwick, B., et al. (2015). Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nature Communications. doi: 10.1038/ncomms7407 Google Scholar
  43. 43.
    Popa, C. (2016). Modelling identities. Late iron age identity in South-East Europe. QAAM 2. New York: Springer.Google Scholar
  44. 44.
    Ravenstein, E. (1889). The laws of migration. Journal of the Royal Statistical Society, 52, 241–305.CrossRefGoogle Scholar
  45. 45.
    Reilly, W.J. (1931). The law of retail gravitation. New York: Knickerbocker.Google Scholar
  46. 46.
    Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien: Springer.CrossRefGoogle Scholar
  47. 47.
    Stewart, J. Q. (1948). Demographic gravitation: Evidence and application. Sociometry, 11, 31–58.CrossRefGoogle Scholar
  48. 48.
    Tarski, A., Mostowski, A., & Robinson, R. M. (1953). Undecidable theories. Amsterdam: North-Holland.Google Scholar
  49. 49.
    Thalheim, B., & Nissen, I. (2015). Ein neuer Modellbegriff. In B. Thalheim, & I. Nissen, (Eds.), Wissenschaft und Kunst der Modellierung. Kieler Zugang zur Definition, Nutzung und Zukunft. Philosophische Analysen (Vol. 64, pp. 491–547). Berlin: De Gruyter.Google Scholar
  50. 50.
    Thrusfield, M. (1995). Veterinary epidemiology. Hoboken: Wiley-Blackwell.Google Scholar
  51. 51.
    Thünen, J. H. v.: Der isolirte Staat in Beziehung auf Landwirtschaft und Nationalökonomie. Berlin: Wiegand, Hempel und Parey.Google Scholar
  52. 52.
    Tobler W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2), 234–240.CrossRefGoogle Scholar
  53. 53.
    Traulsen, I. (2015). Modellierung von Tierseuchen. In B. Thalheim, & I. Nissen, (Eds.), Wissenschaft und Kunst der Modellierung. Kieler Zugang zur Definition, Nutzung und Zukunft. Philosophische Analysen (Vol. 64, pp. 475–488). Berlin: De Gruyter.Google Scholar
  54. 54.
    Velten, K. (2009). Mathematical modeling and simulation. Weinheim: VLC.Google Scholar
  55. 55.
    Volterra, V. (1926). Variazioni e fluttuazioni del numero dindividui in specie animali conviventi. Mem. Acad. Lincei Roma, 2, 31–113.Google Scholar
  56. 56.
    Weber, M. (1904). Die Objektivität sozialwissenschaftlicher und sozialpolitischer Erkenntnis. Tübingen: J.C.B. Mohr.Google Scholar
  57. 57.
    Zubrow, E. B. W. (1975). Prehistoric carrying capacity: A model. Menlo Park: Cummings Publishing.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Oliver Nakoinz
    • 1
  • Daniel Knitter
    • 2
  1. 1.University of KielKielGermany
  2. 2.Excellence Cluster TopoiFreie UniversitätBerlinGermany

Personalised recommendations