Skip to main content

4 Disturbance in Natural Ecosystems: Scaling from Fungal Diversity to Ecosystem Functioning

  • Chapter
  • First Online:
Environmental and Microbial Relationships

Part of the book series: The Mycota ((MYCOTA,volume IV))

Abstract

The unique structure and physiology of fungi make them sensitive and resilient in the face of natural disturbance. The impact of disturbance on a fungal community depends on the disturbance type, scale, and frequency. As fungi play key roles in nutrient turnover and plant nutrition, disturbances alter the fungal community feedback to impact ecosystem dynamics through changes to nutrient cycling and alterations to plant diversity. In general, small-scale disturbances increase heterogeneity in pattern and process across landscapes with great potential to increase diversity, while catastrophic disturbances decrease diversity. As communities reestablish on devastated sites, similarity to pre-disturbance fungal communities depends on the availability of propagules or transport from adjacent sources. The type of fungal community that reestablishes on a given site can alter and is further altered by the reestablishing plant community structure and nutrient dynamics across the landscape. We suggest ultimately that understanding the roles of disturbances in structuring fungal communities and the feedbacks from fungal communities to ecosystem functioning are crucial to understanding ecosystems and the impacts of larger global scale anthropogenic disturbances on natural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrego N, Salcedo I (2013) Variety of woody debris as the factor influencing wood-inhabiting fungal richness and assemblages: is it a question of quantity or quality? For Ecol Manage 291:377–385

    Article  Google Scholar 

  • Ahlgren IF, Ahlgren CE (1965) Effects of prescribed burning on soil microorganisms in a Minnesota jack pine forest. Ecology 46:304–310

    Article  Google Scholar 

  • Allen MF (1987) Re-establishment of mycorrhizas on Mount St. Helens: migration vectors. Trans Br Mycol Soc 88:413–417

    Article  Google Scholar 

  • Allen MF (1988) Re-establishment of VA mycorrhizae following severe disturbance: comparative patch dynamics of a shrub desert and a subalpine volcano. Proc R Soc Edinb 94:63–71

    Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen EB, Forman RTT (1976) Plant species removals and old-field community structure and stability. Ecology 57:1233–1243

    Article  Google Scholar 

  • Allen MF, MacMahon JA, Andersen DC (1984) Reestablishment of endogonaceae on Mount St. Helens: survival of residuals. Mycologia 76:1031–1038

    Article  Google Scholar 

  • Allen MF, Crisafulli CM, Friese CF, Jeakins SJ (1992) Re-formation of mycorrhizal symbioses on Mount St Helens, 1980-1990: interactions of rodents and mycorrhizal fungi. Mycol Res 96:447–453

    Article  Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    Article  CAS  Google Scholar 

  • Allen EB, Allen MF, Egerton-Warburton L, Corkidi L, Gomez-Pompa A (2003) Impacts of early- and late-seral mycorrhizae during restoration in seasonal tropical forest, Mexico. Ecol Applic 13:1702–1717

    Article  Google Scholar 

  • Allen MF, Allen EB, Gomez-Pompa A (2005a) Effects of mycorrhizae and nontarget organisms on restoration of a seasonal tropical forest in Quintana Roo, Mexico: factors limiting tree establishment. Restor Ecol 13:325–333

    Article  Google Scholar 

  • Allen MF, Crisafulli CM, Morris SJ, Egerton-Warburton LM, MacMahon JA, Trappe JM (2005b) Mycorrhizae and Mount St. Helens: story of a symbiosis. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, NY

    Google Scholar 

  • Allen MF, Klironomos JN, Treseder KK, Oechel WC (2005c) Responses of soil biota to elevated CO2 in a chaparral ecosystem. Ecol Applic 15:1701–1711

    Article  Google Scholar 

  • Andersen DC, MacMahon JA (1985) Plant succession following the Mount St. Helens volcanic eruption: facilitation by a burrowing rodent, Thomomys talpoides. Am Mid Nat 114:52–69

    Article  Google Scholar 

  • Armstrong RA (1976) Fugitive species: experiments with fungi and some theoretical considerations. Ecology 57:953–963

    Article  Google Scholar 

  • Barto K, Friese C, Cipollini D (2010) Arbuscular mycorrhizal fungi protect a native plant from allelopathic effects of an invader. J Chem Ecol 36:351–360

    Article  CAS  PubMed  Google Scholar 

  • Bässler C, Müller J, Svoboda M, Lepšová A, Hahn C, Holzer H, Pouska V (2012) Diversity of wood-decaying fungi under different disturbance regimes—a case study from spruce mountain forests. Biodivers Conserv 21:33–49

    Article  Google Scholar 

  • Bastias BA, Huang ZQ, Blumfield T, Xu Z, Cairney JWG (2006) Influence of repeated prescribed burning on the soil fungal community in an eastern Australian wet sclerophyll forest. Soil Biol Biochem 38:3492–3501

    Article  CAS  Google Scholar 

  • Bazzaz FA (1983) Characteristics of populations in relation to disturbance in natural and man-modified ecosystems. In: Mooney HA, Godron M (eds) Disturbance and ecosystems, vol 44, Ecological studies. Springer, New York, NY, pp 259–275

    Chapter  Google Scholar 

  • Bendel M, Kienast F, Bugmann H, Rigling D (2006) Incidence and distribution of Heterobasidion and Armillaria and their influence on canopy gap formation in unmanaged mountain pine forests in the Swiss Alps. Eur J Plant Pathol 116:85–93

    Article  Google Scholar 

  • Boddy L (1984) The micro-environment of basidiomycete mycelia in temperate deciduous woodlands. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 261–289

    Google Scholar 

  • Boerner REJ, Decker KLM, Sutherland EK (2000) Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: a landscape-scale analysis. Soil Biol Biochem 32:899–908

    Article  CAS  Google Scholar 

  • Bohlen P (2006) Biological invasions: linking the aboveground and belowground consequences. Appl Soil Ecol 32:1–5

    Article  Google Scholar 

  • Bouasria A, Mustafa T, De Bello F, Zinger L, Lemperiere G, Geremia RA, Choler P (2012) Changes in root-associated microbial communities are determined by species-specific plant growth responses to stress and disturbance. Eur J Soil Biol 52:59–66

    Article  Google Scholar 

  • Brundrett MC, Ashwath N (2013) Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant Soil 370:419–433

    Article  CAS  Google Scholar 

  • Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J (2008) Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055

    Article  PubMed  Google Scholar 

  • Carey AB (2000) Effects of new forest management strategies on squirrel populations. Ecol Applic 10:248–257

    Google Scholar 

  • Carpenter SE, Trappe JM, Ammirati J Jr (1987) Observations of fungal succession in the Mount St. Helens devastation zone, 1980-1983. Can J Bot 65:716–728

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Vitousek PM (2012) Principles of terrestrial ecosystem ecology. Springer, New York, NY

    Google Scholar 

  • Claridge AW, Trappe JM, Hansen K (2009) Do fungi have a role as soil stabilizers and remediators after forest fire? For Ecol Manag 257:1063–1069

    Article  Google Scholar 

  • Coleman DC, Crossley DA, Hendrix PF (2004) Fundamentals of soil ecology. Elsevier, Burlington, MA

    Google Scholar 

  • Collins SL (1987) Interactions of disturbances in tallgrass prairie: a field experiment. Ecology 68:1243–1250

    Article  Google Scholar 

  • Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710–723

    Article  Google Scholar 

  • Cooke RC, Rayner ADM (1984) Ecology of saprotrophic fungi. Longman, London

    Google Scholar 

  • Crisafulli CM, Swanson FJ, Dale VH (2005) Overview of ecological responses to the eruption of Mount St. Helens: 1980–2005. In: Crisafulli CM, Swanson FJ, Dale VH (eds) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, NY, pp 287–299

    Chapter  Google Scholar 

  • Denef K, Six J, Bossuyt H, Frey SD, Elliott ET, Merckx R, Paustian K (2001) Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol Biochem 33:1599–1611

    Article  CAS  Google Scholar 

  • Dhillion SS, Anderson RC, Liberta AE (1988) Effect of fire on the mycorrhizal ecology of little bluestem (Schizachyrium scoparium). Can J Bot 66:706–713

    Article  Google Scholar 

  • Duan T, Facelli E, Smith SE, Smith FA, Nan Z (2011) Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biol Biochem 43:571–578

    Article  CAS  Google Scholar 

  • Dunn CP, Guntenspergen GR, Dorney JR (1983) Catastrophic wind disturbance in an old-growth hemlock-hardwood forest, Wisconsin. Can J Bot 61:211–217

    Article  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Applic 10:484–496

    Article  Google Scholar 

  • Eviner VT, Chapin FS (2003) Gopher-plant-fungal interactions affect establishment of an invasive grass. Ecology 84:120–128

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103:143–156

    Article  Google Scholar 

  • Fisk MC, Fahey TJ, Sobieraj JH, Staniec AC, Crist TO (2011) Rhizosphere disturbance influences fungal colonization and community development on dead fine roots. Plant Soil 341:279–293

    Article  CAS  Google Scholar 

  • Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Article  Google Scholar 

  • Friese CF, Allen MF (1993) The interaction of harvester ants and vesicular-arbuscular mycorrhizal fungi in a patchy semi-arid environment: the effects of mound structure on fungal dispersion and establishment. Funct Ecol 7:13–20

    Article  Google Scholar 

  • Friese CF, Morris SJ, Allen MF (1997) Disturbance in natural ecosystems: scaling from fungal diversity to ecosystem functioning. In: Wicklow DT, Söderström B (eds) The mycota, vol IV, Environmental and microbial relationships. Springer, Berlin, pp 47–63

    Google Scholar 

  • Gams W (1992) The analysis of communities of saprophytic microfungi with special reference to soil fungi. In: Winterhoff W (ed) Fungi in vegetation science. Kluwer, Amsterdam, pp 183–223

    Chapter  Google Scholar 

  • Gehring CA, Mueller RC, Haskins KE, Rubow TK, Whitham TG (2014) Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants. Front Microbiol 5

    Google Scholar 

  • Gemma JN, Koske RE (1990) Mycorrhizae in recent volcanic substrates in Hawaii. Am J Bot 77:1193–1200

    Article  Google Scholar 

  • Gentry JB, Stiritz KL (1972) The role of the Florida harvester ant, Pogonomyrmex badius, in old field mineral nutrient relationships. Environ Entomol 1:39–41

    Article  Google Scholar 

  • Gochenaur SE (1981) Response of soil fungal communities to disturbance. In: Wicklow DT, Carroll GC (eds) The fungal community: its organization and role in the ecosystem. Dekker, New York, NY, pp 459–479

    Google Scholar 

  • Grove S, Haubensak KA, Parker IM (2012) Direct and indirect effects of allelopathy in the soil legacy of an exotic plant invasion. Plant Ecol 213:1869–1882

    Article  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18:418–423

    Article  Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1999) Plant growth and ectomycorrhiza formation by transplants on deglaciated land near Exit Glacier, Alaska. Mycorrhiza 8:297–304

    Article  Google Scholar 

  • Hendrix LB, Smith SD (1986) Post-eruption revegetation of Isla Fernandina, Galapagos: II. Natl Geogr Res 2:6–16

    Google Scholar 

  • Henriksson LE, Henriksson E (1974) Occurrence of fungi on the volcanic island of Surtsey, Iceland. Acta Bot Islandica 3:82–88

    Google Scholar 

  • Hodge A, Fitter AH (2013) Microbial mediation of plant competition and community structure. Funct Ecol 27:865–875

    Article  Google Scholar 

  • Hunt HW, Wall DH (2002) Modeling the effects of loss of soil biodiversity on ecosystem function. Glob Change Biol 8:33–50

    Article  Google Scholar 

  • Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis. New Phytol 158:569–578

    Article  Google Scholar 

  • Jumpponen A, Trappe JM, Cazares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12:43–49

    Article  PubMed  Google Scholar 

  • Klironomos JN, Kendrick B (1995) Relationships among microarthropods, fungi, and their environment. Plant Soil 170:183–197

    Article  CAS  Google Scholar 

  • Koide RT, Mooney HA (1987) Spatial variation in inoculum potential of vesicular-arbuscular mycorrhizal fungi caused by formation of gopher mounds. New Phytol 107:173–182

    Article  Google Scholar 

  • Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi. Ann For Sci 68:45–55

    Article  Google Scholar 

  • Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al‐Soud WA, Sørensen SJ, Rosendahl S (2012) 454‐sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160

    Article  Google Scholar 

  • Lilleskov EA, Bruns TD (2003) Root colonization dynamics of two ectomycorrhizal fungi of contrasting life history strategies are mediated by addition of organic nutrient patches. New Phytol 159:141–151

    Article  Google Scholar 

  • Lindahl BD, de Boer W, Finlay RD (2010) Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME J 4:872–881

    Article  PubMed  Google Scholar 

  • MacMahon JA, Phillips DL, Robinson JV, Schimpf DJ (1978) Levels of biological organization: an organism-centered approach. BioScience 28:700–704

    Article  CAS  PubMed  Google Scholar 

  • Mandel RD, Sorenson CJ (1982) The role of the western harvester ant (Pogonomyrmex occidentalis) in soil formation. Soil Sci Soc Am J 46:785–788

    Article  CAS  Google Scholar 

  • McClendon T, Redente EF (1990) Succession patterns following soil disturbance in a sagebrush steppe community. Oecologia 85:293–300

    Article  Google Scholar 

  • McFarland JW, Waldrop MP, Haw M (2013) Extreme CO2 disturbance and the resilience of soil microbial communities. Soil Biol Biochem 65:274–286

    Article  CAS  Google Scholar 

  • McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Treseder KK (2010) Functional diversity in resource use by fungi. Ecology 91:2324–2332

    Article  PubMed  Google Scholar 

  • McNaughton SJ, Oesterheld M (1990) Extramatrical mycorrhizal abundance and grass nutrition in a tropical grazing ecosystem, the Serengeti National Park, Tanzania. Oikos 59:92–96

    Article  Google Scholar 

  • Meyer O (1993) Functional groups of microorganisms. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 67–96

    Google Scholar 

  • Moles AT, Gruber MA, Bonser SP (2008) A new framework for predicting invasive plant species. J Ecol 96:13–17

    Google Scholar 

  • Molina R, Massicotte H, Trappe J (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, NY, pp 357–423

    Google Scholar 

  • Mooney HA, Godron M (1983) Disturbance and ecosystems: components of response. In: Mooney HA, Godron M (eds) Disturbance and ecosystems, vol 44, Ecological studies. Springer, Berlin

    Chapter  Google Scholar 

  • Moore-Landecker E (1990) Fundamentals of the fungi. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Morris SJ, Robertson GP (2005) Linking function between scales of resolution. In: Dighton J, Oudemans P, White J (eds) The fungal community, 3rd edn. Marcel Dekker, New York, NY, pp 13–26

    Google Scholar 

  • Nordén J, Penttilä R, Siitonen J, Tomppo E, Ovaskainen O (2013) Specialist species of wood‐inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J Ecol 101:701–712

    Article  Google Scholar 

  • Papaik MJ, Canham CD, Latty EF, Woods KD (2005) Effects of an introduced pathogen on resistance to natural disturbance: beech bark disease and windthrow. Can J For Res 35:1832–1843

    Article  Google Scholar 

  • Parker T, Clancy KM, Mathiasen RL (2006) Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agric For Entomol 8:167–189

    Article  Google Scholar 

  • Pattinson GS, Hammill KA, Sutton BG, McGee PA (1999) Simulated fire reduces the density of arbuscular mycorrhizal fungi at the soil surface. Mycol Res 103:491–496

    Article  Google Scholar 

  • Paul EA (ed) (2015) Soil microbiology, ecology and biochemistry, 4th edn. Academic Press, San Diego, CA

    Google Scholar 

  • Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M (2007) A strong species–area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 10:470–480

    Article  PubMed  Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2009) Spore heat resistance plays an important role in disturbance‐mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J Ecol 97:537–547

    Article  Google Scholar 

  • Pickett STA, White PS (1985) Patch dynamics: a synthesis. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, New York, NY, pp 371–384

    Google Scholar 

  • Pickett STA, Kolasa J, Armesto JJ, Collins SL (1989) The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136

    Article  Google Scholar 

  • Platt WJ (1975) The colonization and formation of equilibrium plant species associations on badger disturbances in a tall-grass prairie. Ecol Monogr 45:285–305

    Article  Google Scholar 

  • Ransome DB, Lindgren PMF, Sullivan DS, Sullivan TP (2004) Long-term responses of ecosystem components to stand thinning in young lodgepole pine forest I. Population dynamics of northern flying squirrels and red squirrels. For Ecol Manage 202:335–367

    Article  Google Scholar 

  • Read DJ (1993) Plant-microbe mutualisms and community structure. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 181–209

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Renker C, Zobel M, Opik M, Allen MF, Allen EB, Vosatka M, Rydlova J, Buscot F (2004) Structure, dynamics and restoration of plant communities: do arbuscular mycorrhizae matter? In: Temperton VM, Hobbs RJ, Nuttle T, Halle S (eds) Assembly rules and restoration ecology: bridging the gap between theory and practice. Island Press, Washington, DC, pp 189–229

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rodgers VL, Stinson KA, Finzi AC (2008) Ready or not, garlic mustard is moving in: Alliaria petiolata as a member of eastern North American forests. Bioscience 58:426–436

    Article  Google Scholar 

  • Rogers LE, Lavigne RJ (1974) Environmental effects of western harvester ants on the shortgrass plains ecosystem. Environ Entomol 3:994–997

    Article  Google Scholar 

  • Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211–220

    Article  PubMed  Google Scholar 

  • Seagle SW, McNaughton SJ, Ruess RW (1992) Simulated effects of grazing on soil nitrogen and mineralization in contrasting Serengeti grasslands. Ecology 73:1105–1123

    Article  Google Scholar 

  • Snyder SR, Crist TO, Friese CF (2002) Variability in soil chemistry and arbuscular mycorrhizal fungi in harvester ant nests: the influence of topography, grazing and region. Biol Fertil Soils 35:406–413

    Article  CAS  Google Scholar 

  • Sousa WP (1984) The role of disturbance in natural communities. Ann Rev Ecol Syst 15:353–391

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Štursová M, Šnajdr J, Cajthaml T, Bárta J, Šantrůčková H, Baldrian P (2014) When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME J 8:1920–1931

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr 84:3–20

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  CAS  Google Scholar 

  • Treseder KK, Mack MC, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan Boreal forests. Ecol Appl 14:1826–1838

    Article  Google Scholar 

  • Tuininga AR, Dighton J (2004) Changes in ectomycorrhizal communities and nutrient availability following prescribed burns in two upland pine-oak forests in the New Jersey pine barrens. Can J For Res 34:1755–1765

    Article  Google Scholar 

  • Turner MG, Dale VH (1998) Comparing large, infrequent disturbances: what have we learned? Ecosystems 1:493–496

    Article  Google Scholar 

  • van der Wal A, Geydan TD, Kuyper TW, de Boer W (2013) A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 37:477–494

    Article  PubMed  CAS  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Keifer M, Keeley J (2004) Effects of an introduced pathogen and fire exclusion on the demography of sugar pine. Ecol Applic 14:1590–1602

    Article  Google Scholar 

  • Vargas R, Hasselquist N, Allen EB, Allen MF (2010) Effects of a hurricane disturbance on aboveground forest structure, arbuscular mycorrhizae and belowground carbon in a restored tropical forest. Ecosystems 13:118–128

    Article  CAS  Google Scholar 

  • Vilarino A, Arines J (1991) Numbers and viability of vesicular-arbuscular fungal propagules in field soil samples after wildfire. Soil Biol Biochem 23:1083–1087

    Article  Google Scholar 

  • Wang M-Y, Hu L-B, Wang W-H, Liu S-T, Li M, Liu R-J (2009) Influence of long-term fixed fertilization on diversity of arbuscular mycorrhizal fungi. Pedosphere 19:663–672

    Article  CAS  Google Scholar 

  • Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886

    Article  PubMed  Google Scholar 

  • Wicklow DT (1973) Microfungal populations in surface soils of manipulated prairie stands. Ecology 54:1302–1310

    Article  Google Scholar 

  • Williamson WM, Wardle DA (2007) The soil microbial community response when plants are subjected to water stress and defoliation disturbance. Appl Soil Ecol 37:139–149

    Article  Google Scholar 

  • Winder RS, Shamoun SF (2006) Forest pathogens: friend or foe to biodiversity? Can J Plant Path 28:S221–S227

    Article  Google Scholar 

  • Wolfe BE, Rodgers VL, Stinson KA, Pringle A (2008) The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J Ecol 96:777–783

    Article  Google Scholar 

  • Wright E, Bollen WB (1961) Microflora of Douglas-fir forest soil. Ecology 42:825–828

    Article  Google Scholar 

  • Wurst S, Ohgushi T (2015) Do plant‐and soil‐mediated legacy effects impact future biotic interactions? Funct Ecol. doi:10.1111/1365-2435.12456

    Google Scholar 

  • Xiong J, Peng F, Sun H, Xue X, Chu H (2014) Divergent responses of soil fungi functional groups to short-term warming. Microb Ecol 68:708–715

    Article  CAS  PubMed  Google Scholar 

  • Zinke PJ (1962) The pattern of influence of individual forest trees on soil properties. Ecology 43:130–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morris, S.J., Friese, C.F., Allen, M.F. (2016). 4 Disturbance in Natural Ecosystems: Scaling from Fungal Diversity to Ecosystem Functioning. In: Druzhinina, I., Kubicek, C. (eds) Environmental and Microbial Relationships. The Mycota, vol IV. Springer, Cham. https://doi.org/10.1007/978-3-319-29532-9_4

Download citation

Publish with us

Policies and ethics