Skip to main content

1 Running Hot and Cold: Recombination Around and Within Mating-Type Loci of Fungi and Other Eukaryotes

  • Chapter
  • First Online:
Environmental and Microbial Relationships

Part of the book series: The Mycota ((MYCOTA,volume IV))

Abstract

Recombination, both crossover and gene conversion, plays fundamental roles in evolution by generating novel allele combinations, as well as by increasing the genetic diversity and facilitating natural selection. In many fungal species, recombination is also critical for sex (mating-type) determination and sexual development, and the evolution of the mating-type locus (MAT) is likely strongly influenced by recombination (or lack thereof). On the other hand, in some fungal species, the presence of a mating-type locus on a chromosome can affect its recombinational landscape. Additionally, while in some cases the MAT locus is associated with repressed crossing-over within, there are also examples where recombination hot spots are present within or in the proximity of the MAT locus. Given the diverse mating systems and mating-type determination mechanisms in different species, fungi as well as other microbial eukaryotes provide rich resources to study the effects of recombination on mechanisms of sex determination and sexual development, as well as the evolution of sex determination systems and sex chromosomes in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida JMGCF, Cissé OH, Fonseca Á, Pagni M, Hauser PM (2015) Comparative genomics suggests primary homothallism of Pneumocystis species. mBio 6. doi:10.1128/mBio.02250-14

  • Andersen SL, Sekelsky J (2010) Meiotic versus mitotic recombination: two different routes for double-strand break repair. Bioessays 32:1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrewes FW (1922) Studies in group-agglutination I. The Salmonella group and its antigenic structure. J Pathol Bacteriol 25:505–521

    Article  Google Scholar 

  • Arcangioli B, de Lahondes R (2000) Fission yeast switches mating type by a replication-recombination coupled process. EMBO J 19:1389–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsoum E, Martinez P, Åström SU (2010) α3, a transposable element that promotes host sexual reproduction. Genes Dev 24:33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloomfield G (2014) Sex determination: ciliates’ self-censorship. Curr Biol 24:R617–R619

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield G, Skelton J, Ivens A, Tanaka Y, Kay RR (2010) Sex determination in the social amoeba Dictyostelium discoideum. Science 330:1533–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes MD, Hamilton EP, Xiong J, Lawson MJ, Yuan D, Hadjithomas M, Miao W, Orias E (2013) Selecting one of several mating types through gene segment joining and deletion in Tetrahymena thermophila. PLoS Biol 11, e1001518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff J-N et al (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46:253–260

    Article  CAS  PubMed  Google Scholar 

  • Ciccodicola A, D’Esposito M, Esposito T, Gianfrancesco F, Migliaccio C, Miano MG, Matarazzo MR, Vacca M, Franzè A, Cuccurese M et al (2000) Differentially regulated and evolved genes in the fully sequenced Xq/Yq pseudoautosomal region. Hum Mol Genet 9:395–401

    Article  CAS  PubMed  Google Scholar 

  • Dalgaard JZ, Klar AJS (1999) Orientation of DNA replication establishes mating-type switching pattern in S. pombe. Nature 400:181–184

    Article  CAS  PubMed  Google Scholar 

  • Egel R (2005) Fission yeast mating-type switching: programmed damage and repair. DNA Repair 4:525–536

    Article  CAS  PubMed  Google Scholar 

  • Findley K, Sun S, Fraser JA, Hsueh Y-P, Averette AF, Li W, Dietrich FS, Heitman J (2012) Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex. PLoS Genet 8, e1002528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser JA, Diezmann S, Subaran RL, Allen A, Lengeler KB, Dietrich FS, Heitman J (2004) Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol 2, e384

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser JA, Hsueh Y-P, Findley K, Heitman J (2007) Evolution of the mating-type locus – the basidiomycetes. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC, pp 19–34

    Chapter  Google Scholar 

  • Futcher AB (1986) Copy number amplification of the 2 μm circle plasmid of Saccharomyces cerevisiae. J Theor Biol 119:197–204

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma L-J, Wortman JR, Batzoglou S, Lee S-I, Basturkmen M, Spevak CC, Clutterbuck J et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Gioti A, Mushegian AA, Strandberg R, Stajich JE, Johannesson H (2012) Unidirectional evolutionary transitions in fungal mating systems and the role of transposable elements. Mol Biol Evol 29:3215–3226

    Article  CAS  PubMed  Google Scholar 

  • Gioti A, Nystedt B, Li W, Xu J, Andersson A, Averette AF, Münch K, Wang X, Kappauf C, Kingsbury JM et al (2013a) Genomic insights into the atopic eczema-associated skin commensal yeast Malassezia sympodialis. Mbio 4:e00572-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Gioti A, Stajich JE, Johannesson H (2013b) Neurospora and the dead-end hypothesis: genomic consequences of selfing in the model genus. Evolution 67:3600–3616

    Article  CAS  PubMed  Google Scholar 

  • Giraud T, Yockteng R, López-Villavicencio M, Refrégier G, Hood ME (2008) Mating system of the anther smut fungus Microbotryum violaceum: selfing under heterothallism. Eukaryot Cell 7:765–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber JE (2012) Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191:33–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson SJ, Byrne KP, Wolfe KH (2014) Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system. Proc Natl Acad Sci U S A 111:E4851–E4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haykinson MJ, Johnson LM, Soong J, Johnson RC (1996) The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr Biol 6:163–177

    Article  CAS  PubMed  Google Scholar 

  • Heitman J, Kronstad JW, Taylor JW, Casselton LA (2007) Sex in fungi. ASM Press, Washington, DC

    Google Scholar 

  • Heitman J, Sun S, James TY (2013) Evolution of fungal sexual reproduction. Mycologia 105:1–27

    Article  CAS  PubMed  Google Scholar 

  • Hicks JB, Herskowitz I (1977) Interconversion of yeast mating types II. Restoration of mating ability to sterile mutants in homothallic and heterothallic strains. Genetics 85:373–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hood ME, Petit E, Giraud T (2013) Extensive divergence between mating-type chromosomes of the anther-smut fungus. Genetics 193:309–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsueh YP, Idnurm A, Heitman J (2006) Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PLoS Genet 2, e184

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes JF, Rozen S (2012) Genomics and genetics of human and primate Y chromosomes. Annu Rev Genomics Hum Genet 13:83–108

    Article  CAS  PubMed  Google Scholar 

  • Hughes JF, Skaletsky H, Pyntikova T, Minx PJ, Graves T, Rozen S, Wilson RK, Page DC (2005) Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature 437:100–103

    Article  PubMed  Google Scholar 

  • Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SKM, Minx PJ, Fulton RS, McGrath SD, Locke DP, Friedman C et al (2010) Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463:536–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Graves T, Fulton RS, Dugan S, Ding Y, Buhay CJ, Kremitzki C et al (2012) Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483:82–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janbon G, Ormerod KL, Paulet D, Byrnes EJ III, Yadav V, Chatterjee G, Mullapudi N, Hon C-C, Billmyre RB, Brunel F et al (2014) Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet 10, e1004261

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaykov A, Arcangioli B (2004) A programmed strand-specific and modified nick in S. pombe constitutes a novel type of chromosomal imprint. Curr Biol 14:1924–1928

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Roger AJ (1995) The selfish pursuit of sex. Nature 375:283

    Article  CAS  PubMed  Google Scholar 

  • Klar AJS (2007) Lessons learned from studies of fission yeast mating-type switching and silencing. Annu Rev Genet 41:213–236

    Article  CAS  PubMed  Google Scholar 

  • Klar AJS (2010) The yeast mating-type switching mechanism: a memoir. Genetics 186:443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon-Chung KJ (1975) A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67:1197–1200

    Article  CAS  PubMed  Google Scholar 

  • Kwon-Chung KJ (1976a) Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68:821–833

    Article  CAS  PubMed  Google Scholar 

  • Kwon-Chung KJ (1976b) A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 68:943–946

    CAS  PubMed  Google Scholar 

  • Labarère J, Noël T (1992) Mating type switching in the tetrapolar basidiomycete Agrocybe aegerita. Genetics 131:307–319

    PubMed  PubMed Central  Google Scholar 

  • Lee N, Bakkeren G, Wong K, Sherwood JE, Kronstad JW (1999) The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Proc Natl Acad Sci U S A 96:15026–15031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengeler KB, Fox DS, Fraser JA, Allen A, Forrester K, Dietrich FS, Heitman J (2002) Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot Cell 1:704–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Challen M, Elliott T, Casselton L (2004) Molecular analysis of breeding behavior in Agaricus species. Mushroom Sci 16:103–109

    Google Scholar 

  • Lin X, Hull CM, Heitman J (2005) Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Litvintseva AP, Nielsen K, Patel S, Floyd A, Mitchell TG, Heitman J (2007) αADα hybrids of Cryptococcus neoformans: evidence of same-sex mating in nature and hybrid fitness. PLoS Genet 3:1975–1990

    CAS  PubMed  Google Scholar 

  • Lin X, Patel S, Litvintseva AP, Floyd A, Mitchell TG, Heitman J (2009) Diploids in the Cryptococcus neoformans serotype A population homozygous for the α mating type originate via unisexual mating. PLoS Pathog 5, e1000283

    Article  PubMed  PubMed Central  Google Scholar 

  • Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, Fraser JA et al (2005) The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307:1321–1324

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu S-W, Yun S-H, Lee T, Turgeon BG (2011) Altering sexual reproductive mode by interspecific exchange of MAT loci. Fungal Genet Biol 48:714–724

    Article  CAS  PubMed  Google Scholar 

  • Maekawa H, Kaneko Y (2014) Inversion of the chromosomal region between two mating type loci switches the mating type in Hansenula polymorpha. PLoS Genet 10, e1004796

    Article  PubMed  PubMed Central  Google Scholar 

  • Marra RE, Huang JC, Fung E, Nielsen K, Heitman J, Vilgalys R, Mitchell TG (2004) A genetic linkage map of Cryptococcus neoformans variety neoformans serotype D (Filobasidiella neoformans). Genetics 167:619–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino ST, Nelson MA, Jacobson DJ, Natvig DO (1996) Pseudohomothallism and evolution of the mating-type chromosome in Neurospora tetrasperma. Genetics 143:789–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metin B, Findley K, Heitman J (2010) The mating type locus (MAT) and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi. PLoS Genet 6, e10000961

    Article  Google Scholar 

  • Petit E, Giraud T, de Vienne DM, Coelho MA, Aguileta G, Amselem J, Kreplak J, Poulain J, Gavory F, Wincker P et al (2012) Linkage to the mating-type locus across the genus Microbotryum: insights into nonrecombining chromosomes. Evolution 66:3519–3533

    Article  PubMed  Google Scholar 

  • Pöggeler S (1999) Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetes. Curr Genet 36:222–231

    Article  PubMed  Google Scholar 

  • Rajaei N, Chiruvella KK, Lin F, Åström SU (2014) Domesticated transposase Kat1 and its fossil imprints induce sexual differentiation in yeast. Proc Natl Acad Sci 111:15491–15496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raper JR (1966) Genetics of sexuality in higher fungi. Ronald Press, New York, NY

    Google Scholar 

  • Roeder GS, Stewart SE (1988) Mitotic recombination in yeast. Trends Genet 4:263–267

    Article  CAS  PubMed  Google Scholar 

  • Rusche LN, Rine J (2010) Switching the mechanism of mating type switching: a domesticated transposase supplants a domesticated homing endonuclease. Genes Dev 24:10–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverman M, Zieg J, Hilmen M, Simon M (1979) Phase variation in Salmonella: genetic analysis of a recombinational switch. Proc Natl Acad Sci 76:391–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöck M, Horn A, Grossen C, Lindtke D, Sermier R, Betto-Colliard C, Dufresnes C, Bonjour E, Dumas Z, Luquet E et al (2011) Ever-young sex chromosomes in European tree frogs. PLoS Biol 9, e1001062

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun S, Xu J (2007) Genetic analyses of a hybrid cross between serotypes A and D strains of the human pathogenic fungus Cryptococcus neoformans. Genetics 177:1475–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Hsueh Y-P, Heitman J (2012) Gene conversion occurs within the mating-type locus of Cryptococcus neoformans during sexual reproduction. PLoS Genet 8, e1002810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Billmyre RB, Mieczkowski P, Heitman J (2014) Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans. PLoS Genet 10, e1004849

    Article  PubMed  PubMed Central  Google Scholar 

  • Turgeon BG, Inderbitizen P (2015) Pondering mating: Pneumocystis jirovecii, the human lung pathogen, selfs without mating type switching in contrast to its close relative, Schizosaccharomyces pombe. mBio 6(3):e00583–e00615

    PubMed  PubMed Central  Google Scholar 

  • Vengrova S, Dalgaard JZ (2004) RNase-sensitive DNA modification(s) initiates S. pombe mating-type switching. Genes Dev 18:794–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vengrova S, Dalgaard JZ (2006) The wild-type Schizosaccharomyces pombe mat1 imprint consists of two ribonucleotides. EMBO Rep 7:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Votintseva AA, Filatov DA (2009) Evolutionary strata in a small mating-type-specific region of the smut fungus Microbotryum violaceum. Genetics 182:1391–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittle CA, Votintseva A, Ridout K, Filatov DA (2015) Recent and massive expansion of the mating-type specific region in the smut fungus Microbotryum. Genetics 199:809–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun S-H, Berbee ML, Yoder OC, Turgeon BG (1999) Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc Natl Acad Sci 96:5592–5597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Blake Billmyre and Anna Floyd Averette for their comments during the preparation of the manuscript. This work is supported by NIH/NIAID R37 award AI39115-18 and RO1 grant AI50113-12 to J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Heitman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, S., Heitman, J. (2016). 1 Running Hot and Cold: Recombination Around and Within Mating-Type Loci of Fungi and Other Eukaryotes. In: Druzhinina, I., Kubicek, C. (eds) Environmental and Microbial Relationships. The Mycota, vol IV. Springer, Cham. https://doi.org/10.1007/978-3-319-29532-9_1

Download citation

Publish with us

Policies and ethics